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Abstract: In the past, the development of a declarative, set-based interface to ac-
cess data in a DBMS was a key factor for the success of database systems. For
XML, the lingua franca for declarative data access is XQuery. This paper summarizes
the XQuery processing concepts that have been developed in the XTC system (the
XML Transaction Coordinator)—a native XML database management system. We
step through all query processing stages: from parsing over query normalization, type
checking, query simplification, query rewriting, and plan generation to the execution.

1 Introduction

The eXtensible Markup Language (XML) was designed as a technique for document rep-

resentation and data exchange. With the success of this meta language, the volume of

data represented in XML grew steadily, resulting in large document collections. Keeping

such collections serialized as text in files or as BLOBs in relational database management

systems is clearly a bad idea. The process of parsing the relatively verbose XML repre-

sentation upon access is too expensive. Furthermore, loading large XML instances into

main memory is often not viable and multi-user access with updates cannot be efficiently

supported without dedicated access mechanisms to document substructures. Therefore, in

the last decade, tailored XML database management systems have been developed that can

compactly encode XML documents, that enable the transfer of substructures of a document

into main memory, and provide for ACID transactions. The XML Transaction Coordina-

tor (XTC) [HH07] developed at the University of Kaiserslautern is a prototype of such an

XML database management system (XDBMS). XTC is a so-called native XDBMS, be-

cause all its internal structures are tailored to XML storage and processing, in contrast to

systems that map XML to relational tables for storage and processing. In the past, the de-

velopment of a declarative, set-based interface to access data stored in a DBMS (e. g., SQL

for relational systems) was a key factor for the success of database systems in general. For

XML, the lingua franca for declarative data access is XQuery.

This paper summarizes the XML query processing concepts in native XDBMSs that have

been developed in the author’s doctoral thesis [Mat09]. It highlights all stages of the query

∗This work was conducted while the author was an employee at the Database and Information Systems Group

(DBIS) at the University of Kaiserslautern.
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Figure 1: Query evaluation in XTC

evaluation process: from parsing over query normalization, type checking, query simplifi-

cation, query rewriting, and plan generation to the final execution. This approach to query

processing resembles the “standard” query processing pipeline of relational query proces-

sors and, in fact, this work borrows quite some concepts. However, the semantic richness

of the XML data model and the XQuery language requires new solutions at most stages

and poses many interesting research problems. By building on the “standard” pipeline and

standard techniques, the work from [Mat09] can be integrated in existing relational query

processors, for example, to enable XML management in relational engines.

2 XML Query Processing on XTC—An Overview

Given a declarative query, the query processor has to generate a semantically equivalent,

cost-optimal, procedural program, which consists of algorithms and database-specific ac-

cess methods. In the following, we will sketch the process of XML query processing in

XTC, from the external representation of a query in the XQuery language to the execution

on the data store.

In the late 1980s and in the 1990s, the DB research community spent substantial efforts

on the development of extensible query processors for database systems. The idea was to

provide for a framework into which new concepts, such as new language constructs, new

data models, or new processing algorithms could easily be integrated without the need

to re-implement large portions of a query processor [Mit95, KD99]. Systems like EXO-

DUS [GD87], VOLCANO [GM93, Gra94], and Starburst [MKL88, HFLP89, PHH92] are

some well-known examples from that time. The query processor developed in [Mat09]

stands in the tradition of these systems. Therefore, many concepts and terms could be
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borrowed, and, although the XTC query processor was built from scratch, it can be seen

as an extension in the sense of the idea of extensible query processing. To cope with com-

plexity, query processing is generally split up into a number of stages. Each stage receives

a query representation generated by some preceding stage (or given as input) and produces

a further representation with a lower level of abstraction but enriched with more specific

information on how the query has to be evaluated. Figure 1 depicts all query evaluation

stages of the XTC query processor.

The process has a logical abstraction layer and a physical abstraction layer. The logical

layer is completely system independent. The query representations and actions at this level

can be reused to implement a query processor for another XML data source. The aim at this

layer is 1) to find a procedural internal representation such that semantically equivalent (but

syntactically different) queries are mapped onto the same representation, and 2) to rewrite

the query in a way such that intermediate results are minimized. Such a representation

is a good starting point for the actions at the system-dependent physical abstraction layer

below, because, in contrast to the declarative external query representation, a procedural

internal representation contains more information about how the query can be evaluated.

Furthermore, mapping semantically equivalent queries to the same internal representation

makes the query processor robust.

At the physical layer, the query processor has to cope with low-level issues such as doc-

ument storage layout, index structures, or processing algorithms to generate a program

that operates on the database and efficiently computes the query result. In total, the query

processor consists of the six components (see Figure 1): the parser, the translator, the

optimizer, the evaluator, and the metadata component of the XTC system. Some of these

components can share a sixth infrastructure component, which is not depicted in Figure 1.

In the following, we give an overview over the various stages.

3 Parsing, Normalization, Static Typing, and Simplification

In the first stage, XQuery expressions need to be analyzed by a parser and to be converted

into an abstract syntax tree (AST). In XTC, the XQuery grammar specified by the W3C

Recommendation [BCF+04] is given to a parser generator to create the XQuery parser.

In the next stage, the query translator transforms a given AST into an internal representa-

tion for the query optimizer. The translator has four stages: normalization, static typing,

simplification, and XQGM transformation. Normalization and static typing are defined in

the XQuery Formal Semantics Recommendation [CFS07]. Normalization transforms an

XQuery expression to an equivalent expression in the XQuery Core Language, which is a

subset of the original XQuery language. Static type checking derives the type of all subex-

pressions in the query and checks for static typing errors. The derived type annotations of

all subexpressions can be used for optimization and restructuring.

Simplification aims at the removal of subexpressions with no effect on the query result.

Such redundant constructs are sometimes introduced by programs that automatically gen-

erate queries, by view expansion, by users who do so accidentally, or by normalization.
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Figure 2: Abstract syntax tree for XMark query Q5

Simplification is implemented using the infrastructure component of the query proces-

sor. This component interprets a query representation (in this case the AST) as a tree and

employs a rule-inference engine to apply tree transformations that are specified by restruc-

turing rules. A rule has a pattern and a transformation instruction. When a rule matches

the tree representation, the transformation instruction is applied to rewrite the tree at that

position. Because the infrastructure component is just an implementation aspect, it will

not be introduced in detail.

To illustrate these steps, let us consider the following query that emanates from the XMark

benchmark [SWK+02] (Query 5) and returns the number of price elements that have a

content larger than or equal to “40”:

let $auction := doc("auction.xml") return

count(

for $i in $auction/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price

)

The abstract syntax tree produced by the parser for this query consists of roughly 40 nodes.

For the sake of brevity, Figure 2 does not contain all these nodes, but only a fragment of the

complete AST. As you can see, the representation is quite straightforward. Every particle

from the XQuery grammar corresponds to a node in the AST.

Normalization translates the AST produced by the parser into a rewritten AST with the

same semantics, but with a reduced set of language constructs. As a result, normalization

removes syntactic sugar. The normalized version of the above query has the following

form1:

let $auction := doc(auction.xml)

return count(

for $i in ddo(

for $fs:dot in $auction

return ddo(

for $fs:dot in child::site

return

ddo(

for $fs:dot in child::closed_auctions

1Note, this representation is simplified to facilitate comprehension. Function ddo stands for fn:distinct-doc-

order, and—against the W3C recommendation—the constructs to produce positional information are omitted.
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return child::closed_auction)))

where fn:data(ddo(

for $fs:dot in $i

return

ddo(for $fs:dot in child::price

return child::text()))) >= fn:data(40)

return

ddo(for $fs:dot in $i

return child::price))

You can observe that the normalized variant of the query does not contain any path ex-

pressions, only axis steps (e. g., child::site). Path expressions are rewritten to for

clauses. The normalization process injects ddo and fn:data functions to ensure duplicate-

free intermediate results (ddo) and atomic values for comparisons (fn:data).

Static typing infers the type of all subexpressions in a normalized query. For example, in

the query above, the static type of the integer literal “40” is trivially integer. The surround-

ing fn:data function also delivers type integer, which is then used in the comparison. The

comparison, in turn, is of type Boolean, and so on.

Even in our small example, you can observe that the normalization process is defined in

a rather defensive manner, i. e., it injects certain functions blindly, even when they are

not necessarily required. For example, the injected fn:data function around the integer

literal “40” does not have an effect and can be safely omitted. A further example is the

ddo function that is always injected, even when the intermediate result will always be in

distinct document order. Besides normalization, users might write XQuery expressions

with redundant or unnecessary subexpressions. Simplification aims at removing this kind

of redundancy. An equivalent query for the above one might look like the following:

let $auction := doc(auction.xml)

return count(

for $i in

for $fs:dot in $auction

return

for $fs:dot in child::site

return

for $fs:dot in child::closed_auctions

return child::closed_auction

where fn:data(

for $fs:dot in $i

return

for $fs:dot in child::price

return child::text()) >= 40

return

for $fs:dot in $i

return child::price)

The ddo functions are not necessary and the fn:data function around the integer literal can

be removed2. Currently, the XQuery processor can detect simplification opportunities in

various situations (see [Mat09]). Note, however, that the simplification logic aiming at re-

moving ddo functions is not yet integrated (although this topic has already been discussed

in the literature [FHM+05]). Since XQuery is a quite flexible and freely composable lan-

guage, many more situations than those handled in this work allowing for simplifications

might exist. This work does however not dwell further.

2This is actually possible, because static typing revealed that the argument of the fn:data function is already

an atomic value and therefore does not need atomization.
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Figure 3: An example query represented in XQGM

4 The XML Query Graph Model

The last translation stage is the XQGM transformation. In this stage, the query translator

transforms the AST into an instance of the XML query graph model. This is necessary,

because the AST is not an appropriate format for query optimization as it lacks procedural-

ity, i. e., it does not reveal data flow and control flow to evaluate the query. A better-suited

internal query representation is the query graph model (QGM) introduced in the relational

Starburst system [HFLP89, PHH92]. Although the QGM was designed for a relational

engine, it provides enough flexibility to embed new language constructs like, for example,

SQL recursion. In this work, we reused the QGM to support XML query processing. The

resulting internal representation is called XQGM for XML query graph model. The initial

XQGM instance for our sample query is depicted in Figure 4. All logical and physical

plans presented in this and the following chapters are generated by a plan visualization

tool developed in [MWHH08].

The syntax and semantics of XQGM can be found in [Mat09]. Here, we only give a brief

introduction by example. Consider the query and its corresponding XQGM instance in

Figure 3: An XQGM instance is an operator graph or a box-and-arrow diagram. Every

box is a logical operator which produces data (most operators also consume data). The

data produced flows along the arrows. All operators have a name describing the func-

tionality of the operator and a unique identifier that follows the name in braces, e. g.,

“SELECT(2)”. In the following, we use a lower-case font to refer to operator names.

The graphical elements inside an operator specify how the operator processes input data
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and how it computes results. For example, select(2) consists of four so-called tuple

variables (depicted as circles) controlling the input data flow and creating a tuple stream,

a predicate describing the selection expression on the tuple stream, a sort specification to

modify the order of the tuple stream, and a projection specification defining how the output

shall be computed. Tuple variables carry a quantifier (e. g., “F”, for for quantification, and

“L” for let quantification; see below) and a unique identifier to facilitate their distinction

separated by a colon. The data model, based on which the semantics of XQGM is defined

is similar to the XML data model (XDM) [FMM+04]. The major difference is that the

XQGM data model allows tuples with nested tuple sequences.

To illustrate the semantics of XQGM, we step through the query execution of our sample

query shown in Figure 4:

• Let us start with the control flow: The query processor calls the topmost select(1)

operator, which, in turn, calls the next select(2) operator below to produce

some output. Select(2) has three tuple variables, one of which carries an “F”

specifying for-quantification semantics. The other tuple variables carry an “L”

for let-quantification semantics. Tuple variables receive the output generated by

their subgraphs. They define how this output is assembled into a stream of tuples.

How this actually works will be sketched below. For now, we just proceed with

the subexpression under tuple variable F:6. Select(3) is called and, in turn,

access(5).

• Every operator calls its dependent sub-operators and awaits data for further process-

ing. Access(5) is the first operator that actually produces data. It is a document

access operator delivering the virtual root node [FMM+04] of the “auction.xml”

document. This node is passed to the select(3) operator which binds it to tuple

variable F:0 and calls select(6) to produce a result for tuple variable L:5.

• Select(6) in turn calls access(7), which is a navigational access operator.

This type of access operator needs a context node as input from which the navigation

starts. The context node is delivered by a correlated input edge, depicted as a dotted

arrow. Tuple variable F:0 provides this input by passing the currently bound virtual

root node to access(7). The result of the navigation on the child axis and the

subsequent name test is a single site node. This node is passed to select(6)

which binds it on tuple variable F:1 and calls select(8) to produce results for

tuple variable L:4.

• Select(8) calls access(9) which delivers the closed auctions element (ex-

actly one in every XMark document) using the current node at tuple variable F:1

as correlated input. The closed auctions element serves as correlated input for

access(10) which returns all closed auction elements below. These elements

are passed to tuple variable L:3 which collects them all, puts them into a sequence,

and binds this sequence as the current value (which is actually the semantics of the

let quantification).

• The sequence is then passed to the projection specification, which applies the ddo

function. A tuple variable may either be referenced via a correlated edge (dotted

arrow) or by a so-called tuple variable reference depicted as a rhomb. The ddo

function is also applied in select(6) and select(3) passing the sequence of

closed auction elements to tuple variable F:6.
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Figure 4: XMark query Q5 represented in XQGM

• So far, every for-quantified tuple variable received only a single node as input. For

single nodes, the semantics of for and let are the same. This time, however, tu-

ple variable F:6 receives a sequence of possibly more than one node. While let

passes these nodes as a whole as described above, for iterates over the sequence

items, just like the corresponding constructs in the XQuery language. You can fur-

ther notice that the subtrees below tuple variables L:11 and L:14 depend on the

current node at tuple variable F:6, because these subgraphs have a correlated in-

put edge starting at F:6. This means that for every node at F:6, the dependent

subtrees are evaluated and their result sequences are bound to the corresponding

tuple variables. In the following, we will call L:11 and L:14 dependent tuple vari-

ables, whereas F:6 is called independent. The subtrees below independent tuple

variables have to be evaluated first, because they provide the input for the sub-

trees below dependent tuple variables. Essentially, the subtree below F:6 evaluates

doc("auction.xml")/site/open auctions/open auction. For ev-

ery open auction, the expression below L:11 evaluates the relative path price/

text() and L:14 the relative path price.
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• Inside select(3), the predicate is evaluated for every open auction element. If

the predicate evaluates to true, the current value at tuple variable L:14 is read by

the projection specification and passed as an intermediate result to select(1).

In turn, select(1) collects all these intermediate sequences in another sequence

on which the count function is evaluated to obtain the final result.

The reader familiar with the dynamic evaluation phase specified in the Formal Seman-

tics has noticed that the evaluation model defined there and in XQGM is essentially the

same, i. e., an initial XQGM instance acts as specified in the Formal Semantics. This is

meaningful, because it ensures correctness. In a way, XQGM is a graphical representation

for normalized XQuery expressions. A large fraction of XQuery can be captured solely

by XQGM’s select and access operators. We will not formally introduce the syntax and

semantics of XQGM in this paper. The details can be found in [Mat09].

5 Algebraic Rewriting

Because the semantics of an initial XQGM instance generated by the query translator ad-

heres to Formal Semantics Recommendation, the above sketched evaluation model heavily

relies on nested subexpressions and node-at-a-time navigational methods. This model it is

often far from being optimal.

Therefore, besides classical algebraic optimizations such as selection push-down and se-

lect fusion to minimize intermediate results and the number of operators required, the

algebraic rewriting stage tries to unnest queries as far as possible to enable bulk or set-

at-a-time processing. Unnesting substitutes correlated subexpressions by joins, i. e., by

bulk operators. Like simplification, algebraic rewriting is also implemented using the in-

frastructure component. The XQGM instance is interpreted as a tree structure on which

the generic rule engine executes rule-based transformations. The result of the algebraic

rewriting stage is an unnested and pre-optimized XQGM instance. At this point, the phys-

ical optimization of the query begins and system-specific issues come into play. Before

we discuss plan generation, we like to summarize the algebraic rewriting rules developed

for the XTC query processor. [Mat09] contains all rules with the description of the rule

pattern, its preconditions, and the transformation instructions:

• Removal of external tuple variables: Every variable reference in XQuery results in

a tuple variable reference in XQGM. Some of these references are unnecessary and

are removed by this rule.

• Removal of descendant-or-self steps: Due to normalization, a double-slash opera-

tion as in doc("auction.xml")//item in XQuery results in a descendant-or-

self::node() navigation in XQGM. Sometimes, this navigation step can be replaced

by a descendant step, which is achieved by this rule.

• Range-query detection: Many XDBMSs provide index structures to evaluate content-

based predicates. Those predicates can be point queries or range queries. Range-

based predicates are specified in XQuery with the help of comparison operators and
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Figure 5: Twig matching examples

the Boolean and. The range-query detection rule finds such range predicates and

converts them into an XQGM range predicate, which is easier to evaluate and to

map to the above mentioned index structures.
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• Select fusion: Some rewriting rules leave select operations in a state, where only a

simple operation, like applying the distinct-doc-order function, is executed. In these

cases, the select fusion rule merges the select operation with its input operation.

• Predicate push-down: Predicate push-down is a standard rewriting strategy from

relational query engines. It can also be implemented in XQGM for XQuery. Due to

the existential semantics of general XQuery comparisons (see [CFS07]), predicate

push-down is a little bit more complicated to implement.

• Query unnesting: The normalization phase introduces a nested sub-expression, when-

ever a variable is referenced. This is also reflected in the XQGM instance of the

query. Especially for navigation axes, this approach leads to node-at-a-time evalua-

tion, i. e., for every input node, the navigation axis is evaluated as a sub-expression.

A similar situation arises in SQL queries with nested sub-queries. In almost all situ-

ations, these queries are unnested by the SQL processor and are replaced by a join-

based equivalent. This approach is also viable in XQGM. Here, however, we do not

introduce value-based joins, but structural joins. For structural joins, many efficient

implementations have been proposed in the literature (e. g., [AkPJ+02, CVZ+02,

MHH06, MH06]). After the query has been unnested, all these algorithms can be

applied. Besides from the discussion of query unnesting in [Mat09], an algebraic

approach to query unnesting can also be found in [Mat07].

• Twig detection: Algorithms for twig pattern matching have been heavily researched

in the past [BKS02, CLL05, FJSY05, CLT+06]. Twig matching algorithms can be

used to evaluate branching path expressions that often occur in XQuery. To support

twigs, XQGM specifies a dedicated twig operator. This operator has a so-called twig

specification that can express twigs with various interesting properties that support

idioms frequently occurring in XQuery expressions. Figure 5 exemplifies the se-

mantics of the twig specification. The result is represented as graphical subtrees and

as nested tuples (a data type of the XML algebra [Mat09] based on which XQGM

is defined). Essentially a twig can return all nodes that match (Figure 5a). We can

enforce that the result adheres to the document order [CFS07] (Figure 5b). The twig

specification can define Boolean predicates (Figure 5c) and optional sub-patterns

(Figure 5d). Some queries implicitly group results. Therefore, the double circle

in Figure 5e signals that the matches below shall be grouped (in the tuple result,

groups are represented by sequences in angle brackets). Furthermore, the XQGM

twig specification allows to embed output expressions and filter predicates, for ex-

ample, to generate new XML elements based on the matched results (Figure 5f) or

to check content-based predicates (Figure 5g). Finally, even positional predicates

can be specified (Figure 5h). The twig detection rule is responsible to find sub-

structures in an XQGM instance that can be evaluated by a twig operation with the

expressiveness of the sketched twig specification.

To illustrate the rewriting stage, Figure 6 shows the results on our running example. First

you can observe that the query does not contain any nested subexpressions, it has been

completely unnested (note, the dotted lines inside twig(28) have a different semantics).
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Figure 6: Rewritten XMark query Q5

The access operators are not navigation-based anymore, but access all nodes that match a

certain node test (e. g., all price nodes). The nodes in the twig specification are connected

to the corresponding input tuple variables by dotted lines. In the specification, C stands for

a child relationship, D for descendant, and @ for attribute. The select(1) operator has

the same function as before. It collects the price sequences generated by the twig operator,

adds them to a sequence, and applies the count function. Note, the completeness of the

unnesting and twig detection rule has not been formally shown in [Mat09], i. e., we do

not know, whether all twig queries can be unnested and whether all twigs can be found.

Therefore, we classify the approach as best effort. Nevertheless, we note that all XMark

queries [SWK+02] could be unnested and all twigs were discovered.

6 Plan Generation

Given the result of the rewriting stage, the query processor now has to assemble a query

execution plan (QEP), i. e., it has to map the logical operators onto algorithms and doc-

ument access methods. These algorithms can roughly be grouped into 1. navigational,

join-based, and index-based methods for path matching, and 2. into all remaining algo-

rithms that are necessary to evaluate selections, projections, grouping, value-based joins,

586



etc. The algorithms of the first group, which are also called path processing operators

(PPOs), play a major role in this work, because PPOs access the document (in contrast

to the operators in the second group, which merely operate on the intermediate results

delivered by path operators). Document access can be expensive, therefore, these oper-

ators need special attention. The set of all physical operators is called physical algebra

(PAL). This term was introduced in [GM93] and shall help to distinguish operators from

the physical level (algorithms) from operators on the logical level (XQGM). We give a

brief introduction to the physical algebra in the next section.

Given an XQGM instance, plan generation is implemented in two stages, the first one of

which also relies on the rule engine of the infrastructure component. Here, the rules de-

scribe logical-to-physical mappings or XQGM-to-Plan transformations (similar to [KD99]).

Whenever a rule matches, a description of the physical operators implementing the matched

XQGM operator is created and attached to the matched logical operator. Considering the

relationship between a logical XQGM operator and operators from the physical algebra,

the 1:1, 1:n, n:1, and n:m cardinalities apply: Sometimes there is only one physical alter-

native for a logical operator (1:1), sometimes there are more than one alternatives (1:n),

and sometimes a group of logical operators is implemented by a (group of) physical op-

erator(s) (n:1 or n:m). In the second stage, the plan generator iterates over the XQGM

instance and builds different QEPs from the physical alternatives it finds. Often, the opti-

mizer can create a large variety of structurally different but logically equivalent QEPs for

a single XQGM instance.

From all the different QEPs, the query processor now has to decide, which of them is the

cheapest in terms of processing costs. The answer to this question depends on a large

variety of parameters, such as the optimization goal (e. g., response time, throughput,

main-memory usage, etc.), the structural layout of the document, value distributions in

the document, the current system state (I/O-bound or CPU-bound), and so on. The appli-

cability of certain physical operators depends on the physical layout of the database, i. e.,

on document storage and indexing. At the time [Mat09] was written, cost-based query

optimization was under development. Therefore, in [Mat09], the author restricted the plan

generator to the following: 1. The plan generator should be able to generate every possible

plan in the search space, and 2. the plan generator be able to find a good plan based on

simple heuristics. We will come back to this point at the end of the next section.

7 The Physical Algebra

The physical algebra contains all query evaluation algorithms. Of particular importance

are those algorithms that access the document or some index to match path patterns. Be-

cause XQuery heavily depends on efficient path pattern matching, we focus our discussion

on path procession operators (PPOs). We distinguish navigational, join-based, and index-

based PPOs. The first group of operators is also the most expressive one; every path ex-

pression in a query can be evaluated by navigating the document. Compared to join-based

and index-based methods, they are, however, often enough the group of operators with the

slowest performance. Hence, navigational primitives are a “fall-back solution”, when no

operators of the other two groups can be applied to evaluate a certain path expression.
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Figure 7: Sample document with path-based node labels

Join-based operators stream through the document or over an index that contains refer-

ences to all elements and evaluate path expressions by matching structural relationships

among the streamed nodes. Compared to navigational methods, they often provide for

better performance. However, their use is restricted to certain XPath axes. The two most

prominent representatives for this group are structural joins (STJ) and holistic twig joins

(HTJ). Especially holistic twig joins have gained much attention in the literature and many

variations of the original algorithm [BKS02] have been presented. Most of these variations

aimed at optimizing the algorithm’s structure matching phase and at increasing its perfor-

mance. Below, we will sketch an HTJ algorithm that has been designed to work hand in

hand with indexes and the other algebra operators.

The last group of operators provides index access. We will illustrate how path queries

extracting inner elements (such as //cd[id="cd 101"]) can be answered with path

indexes and how index-based operators can be “married” with join-based operators. Note,

index-based operators have yet again a reduced expressiveness compared to join-based

operators, because join-based operators can match arbitrary branching path patterns and

index-based operators can only match linear paths. In the following, we will give an

overview over the PPOs in the physical algebra, starting with navigational PPOs.

7.1 Navigational PPOs

Let us assume, a document like the one depicted in Figure 7 is stored in XTC’s document

store [Mat09]. Upon storage, the nodes are numbered using path-based node labels (also

known as DeweyIDs or OrdPaths). These labels have certain salient features: they allow

to compute all ancestor labels, their lexicographical order represents the document order,

and they leave gaps to insert new nodes without altering existing labels. Given a node

label, the document allows to retrieve other nodes, for example, all children, the complete

subtree, the next/previous child, the parent node, and so on. These access primitives are

used by navigational PPOs.
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The axis-step navigation operator receives an axis, an XQuery node test, and a reference to

the operation that provides its input node stream. For each node in the input, the algorithm

queries the document store to evaluate the axis expression and applies the node test. Nodes

that fulfill the test are passed on to the next operator. With this algorithm, all XPath axes

and node tests can be evaluated. Note, this algorithm can be applied to evaluate all (but

the left-most) access operations in Figure 4.

A problem with the axis-step navigation operator is that it might do work twice and that it

might return duplicates in the wrong order (depending on the query and the document). As

an example, consider XQuery expression $d/descendant::w, where $d is bound to

sequence S. S is a series of context nodes that serve as starting points for the navigation.

Let S contain two nodes u and v, where v is a descendant of u. Suppose that in the

document, a node w exists, which is a descendant of both u and v. On the evaluation of axis

step $d/descendant::w, the above algorithms would return w twice (because they

are evaluated both on u and v). However, XQuery semantics demands that the result of an

axis step is duplicate free. Therefore, distinct-doc-order functions are embedded during

normalization to sort the result and remove duplicates. The multi-node navigation operator

avoids sorting and duplicates by analyzing the input sequence and only navigating from

nodes that produce a duplicate-free result in document order. The details of this and the

following algorithms are omitted in this paper. We refer to [Mat09].

7.2 Join-Based PPOs

Navigational PPOs require some input node(s), which serve(s) as a starting point for the

navigation operation over the document. In contrast, join-based PPOs do not directly

access the document. They operate on two or more node streams and are capable of finding

path matches in these streams. How the node streams are created does not matter. They

could be the result of a document scan, an index scan (see below), or they could be the

result of other operators. XTC implements variations of two well-known algorithms: the

structural join (STJ) and the holistic twig join (HTJ) algorithm.

The structural join in XTC is a merge-join algorithm, which is an extension of the original

StackTree operator [AkPJ+02]. As an example, consider the two tuple streams containing

track elements and title elements (see Figure 7). The track stream has the following node

labels: 1.3.11.3, 1.3.11.5, 1.3.11.7, and so on. The title stream has labels 1.3.3, 1.3.11.3.3,

1.3.11.5.3, and so on. Suppose we want to find all title children below all track elements.

Because our node labels encode this information and the node streams are ordered, we can

apply the merge-based StackTree algorithm. In our example, the first title element does

not find a join partner.
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We extended the original StackTree operator by some features for the integration into our

physical algebra. Our StackTree variant supports semi-joins, full joins, and outer joins.

The join implementation returns the result in distinct document order (in case of a semi-

join), or in inner/outer and outer/inner output ordering (in case of a full join or an outer

join). The evaluation axis can be one of the following: child, attribute, descendant, parent,

ancestor (and the -or-self variations of descendant and ancestor). The reverse variants of

the algorithms are implemented by exploiting join commutativity.

The twig join operator is a complex merge-join operation that can be seen as an extension

of the structural join. In contrast to structural joins, the algorithm can consume more than

two node streams, in which it matches complex branching path patterns known as twigs.

Our notion of a twig has been introduced as the twig specification in Section 5 and Figure

5. To the best of our knowledge, [Mat09] published the first algorithm that provides all

features that can be expressed in our twig specification. Such an algorithm is desirable,

because the higher its expressiveness, the more operations can be embedded into the twig

algorithm, thus, resulting in a smaller number of operators in the final plan and fewer

intermediate results. Furthermore, evaluating as many operations as possible can avoid

intermediate-result materialization.

We picked a promising approach as the basis for our implementation, namely, the TwigOpt

algorithm proposed by [FJSY05]. The algorithm operates on a set of node streams, one

for each node in the twig. For example, in the physical representation of the XQGM

instance shown in Figure 6, each twig input produces such a stream. The streams can be

generated by a document scan, an index scan, or by other operators. They have to return

the nodes in document order. The twig algorithm accesses a stream through a cursor.

The cursor state can be modified using methods setToFirst(), getCurrent(),

and forwardTo(). The first method initializes the cursor to the first node. The second

method returns the node at the current location of the cursor, and the forwardTo()

method advances the cursor. Based on the state of the cursors, the TwigOpt algorithm

identifies the cursor that can skip the largest fraction of its input stream. This cursor is

advanced as far as possible. After each move, the cursor positions are checked for a twig

match. In case of a match, some output according to the twig specification is produced.

7.3 Index-Based PPOs

XTC supports a variety of indexes. The document store itself is an index that allows

to retrieve nodes by their labels. All elements with a certain name can be indexed by

the so-called element index. Element-index scans can produce node streams for the STJ

and HTJ algorithms. For value-based point and range predicates, XTC can index text

nodes in the content index. Because path expression occur frequently in XQuery, path

indexes can be created. A path index is specified by a linear (i. e., non-branching) path

pattern, for example I(//cd/title). All nodes that fulfill this pattern are stored in the

index. Combining path indexes with content indexes results in the so-called content-and-

structure (CAS) index, which is also defined by a linear path pattern. For all these indexes,

appropriate access operators exist in the physical algebra.
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In the following, we want to highlight a specialty of XTC, namely, the integration of path-

index and CAS-index scans with the holistic twig join operator. Both index types are built

with the help of the path synopsis (PS). A PS is the structural summary of all paths in the

document. In XTC, the PS is kept in main memory for fast access. Figure 8 shows the

PS of our sample document from Figure 7. Every node or attribute in the PS is labeled

with a unique integer called path-class reference (PCR). Given the PS, a PCR, and a node

label, we can reconstruct the entire path to the root without accessing the document (the

labels can be computed from the given node label and the element names can be retrieved

from the path synopsis). For example, PCR 11 (see Figure 8) and node label 1.3.11.3.3

(see Figure 7) let us reconstruct the following ancestor nodes: title (1.3.11.3.3), track

(1.3.11.3), tracks (1.3.11), cd (1.3), and recordStore (1).

Because our path-based indexes store PCRs together with node labels, scan operations on

these index types return PCR-label pairs. By applying ancestor reconstruction to such an

index scan, we can compute the node streams that are required as input to the holistic twig

join operator without document access. This is accomplished with the help of an algorithm

called ancestor tuple builder (ATB). Figure 9 gives a schematic overview over the inter-

action between the holistic twig join and the ancestor tuple builder: Let us assume that

a linear path pattern of a twig specification is covered by a path index (the darker shaded

nodes in Figure 9). Their cursors (C1 to C3) forward the HTJ’s cursor requests to the ATB-

input algorithm, which returns the necessary nodes based on an index-scan cursor (CI ).

Nodes for the ancestor cursors are computed as illustrated above. To trigger their com-

putation, an ATB cursor can call open() to open the node stream and processTo(),

which advances the computation to a given node label (similar to the other twig cursors).

7.4 Heuristics for Plan Generation

As stated in Section 6, the plan generator shall enable the generation of all plans in the

search space (see [Mat09] for the details), and shall be able to assemble a good plan.

To reach the second goal, we conducted a number of experiments based on the XMark

benchmark [SWK+02]. Figure 10 highlights some results. All 20 XMark queries were

evaluated either fully implemented by navigational operators (see Section 7.1), by join-

based operators (see Section 7.2), or based on a set of existing indexes (see Section 7.3). As
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Figure 9: Integrating index scans with the twig join algorithm

you can observe, in this benchmark, join-based query evaluation is almost always a better

strategy than navigation. Especially on queries with long paths, index-based evaluation

is advantageous. From these and from other experimental results reported in numerous

papers about indexing, structural joins, and holistic twig joins, we drew a set of rules

to parameterize the plan generator. We chose the following simple heuristics: The plan

generator 1. always unnests the query to enable join-based query processing, 2. favors

join-based processing over navigational processing, if an element index exists, 3. favors

twig joins over structural joins, and 4. gives indexes the following precedence (from high

to low priority): CAS index, content index, path index, element index, and document

index.

8 Conclusion

XML data processing has been an actively researched topic in the last decade, which lead

to XML support in all major commercial database systems. This paper summarized the

author’s research on XML query processing, which was conducted during the authors en-

gagement in the XTC project at the University of Kaiserslautern. The hierarchical data

model and the semantically rich XQuery language required new approaches to data stor-

age, indexing, query processing algorithms, and query rewriting. To bring these new ap-
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Figure 10: A comparison between physical operators on the XMark query set
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proaches together, XTC leans on the classical relational query-processing pipeline and

extends the well-known relational Query Graph Model for query representation. For a

prototypical system, XTC has a quite extensive physical algebra including a rich set of

different index types and navigational, join-based, and index-based query processing al-

gorithms. This makes XTC ideal as a test bed for future research.
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