
Parallel Sorted Neighborhood Blocking with MapReduce

Lars Kolb, Andreas Thor, Erhard Rahm

Department of Computer Science, University of Leipzig, Germany

{kolb, thor, rahm}@informatik.uni-leipzig.de

Abstract: Cloud infrastructures enable the efficient parallel execution of data-intensive
tasks such as entity resolution on large datasets. We investigate challenges and possi-
ble solutions of using the MapReduce programming model for parallel entity resolu-
tion. In particular, we propose and evaluate two MapReduce-based implementations
for Sorted Neighborhood blocking that either use multiple MapReduce jobs or apply
a tailored data replication.

1 Introduction

Cloud computing has become a popular paradigm for efficiently processing data and com-

putationally intensive application tasks [AFG+09]. Many cloud-based implementations

utilize the MapReduce programming model for parallel processing on cloud infrastructures

with up to thousands of nodes [DG08]. The broad availability of MapReduce distributions

such as Hadoop makes it attractive to investigate its use for the efficient parallelization of

data-intensive tasks.

Entity resolution (also known as object matching, deduplication, or record linkage) is such

a data-intensive and performance-critical task that can likely benefit from cloud comput-

ing. Given one or more data sources, entity resolution is applied to determine all entities

referring to the same real world object [HS95, RD00]. It is of critical importance for data

quality and data integration, e.g., to find duplicate customers in enterprise databases or to

match product offers for price comparison portals.

Many approaches and frameworks for entity resolution have been proposed [BS06, EIV07,

KR10, KTR10b]. The standard (naive) approach to find matches in n input entities is to

apply matching techniques on the Cartesian product of input entities. However, the result-

ing quadratic complexity of O(n2) results in intolerable execution times for large datasets

[KTR10a]. So-called blocking techniques [BCC03] thus become necessary to reduce the

number of entity comparisons whilst maintaining match quality. This is achieved by se-

mantically partitioning the input data into blocks of similar records and restricting entity

resolution to entities of the same block. Sorted neighborhood (SN) is one of the most pop-

ular blocking approaches [HS95]. It sorts all entities using an appropriate blocking key

and only compares entities within a predefined distance window w. The SN approach thus

reduces the complexity to O(n · w) for the actual matching.

In this study we investigate the use of MapReduce for the parallel execution of SN block-

45

ing and entity resolution. By combining the use of blocking and parallel processing we

aim at a highly efficient entity resolution implementation for very large datasets. The pro-

posed approaches consider specific partitioning requirements of the MapReduce model

and implement a correct sliding window evaluation of entities. Our contributions can be

summarized as follows:

• We demonstrate how the MapReduce model can be applied for the parallel execu-

tion of a general entity resolution workflow consisting of a blocking and matching

strategy.

• We identify the major challenges and propose two approaches for realizing Sorted

Neighborhood Blocking on MapReduce. The approaches (called JobSN and RepSN)

either use multiple MapReduce jobs or apply a tailored data replication during data

redistribution.

• We evaluate both approaches and demonstrate their efficiency in comparison to the

sequential approach. The evaluation also considers the influence of the window size

and data skew.

The rest of the paper is organized as follows. In the next section we introduce the MapRe-

duce programming paradigm. Section 3 illustrates the general realization of entity res-

olution using MapReduce. In Section 4, we describe how the SN blocking strategy can

be realized based on MapReduce. Section 5 describes the performed experiments and

evaluation. Related work is discussed in Section 6 before we conclude.

2 MapReduce

MapReduce is a programming model introduced by Google in 2004 [DG04]. It supports

parallel data-intensive computing in cluster environments with up to thousands of nodes. A

MapReduce program relies on data partitioning and redistribution. Entities are represented

by (key, value) pairs. A computation is expressed with two user defined functions:

map : (keyin, valuein) → list(keytmp, valuetmp)

reduce : (keytmp, list(valuetmp)) → list(keyout, valueout)

These functions contain sequential code and are executed in parallel across many nodes

utilizing present data parallelism. MapReduce nodes run a fixed number of mapper and/or

reducer processes. Mapper processes scan disjoint input partitions in parallel and trans-

form each entity in a (key, value)-representation before the map function is executed.

The output of a map function is sorted by key and repartitioned by applying a partitioning

function on the key. A partition may contain different keys but all values with the same key

are in the same partition. The partitions are redistributed, i.e., all (key, value) pairs of a

partition are sent to exactly one node. The receiving node hosts a fixed number of reducer

46

Figure 1: Example of a MapReduce program for counting word occurrences in documents

(similar to [LD10])

processes whereas a single reducer is responsible for handling the map output pairs from

all mappers that share the same key. Since the number of keys within a dataset is in gen-

eral much higher than the number of reducers, a reducer merges all incoming (key, value)
pairs in a sorted order by their intermediate keys. In the reduce phase the reducer passes

all values with the same key to a reduce call.

An exemplary data flow of a MapReduce computation is shown in Figure 1. The MapRe-

duce program counts the number of term occurrences across multiple documents which is

a common task in information retrieval. The input data (list of documents) is partitioned

and distributed to the m = 2 mappers. In the simple example of Figure 1, two documents

are assigned to each of the two mappers. However, a mapper usually processes larger

partitions in practice. Instances of the map function are applied to each partition of the

input data in parallel. In our example, the map function extract all words for all documents

and emits a list of (term, 1) pairs. The partitioning assigns every (key,value) pair to one

reducer according to the key. In the example of Figure 1 a simple range partitioning is

applied. All keys (words) starting with a letter from a through m are assigned to the first

reducer; all other keys are transferred to the second reducer. The input partitions are sorted

for all reducers. The user-defined reduce function then aggregates the word occurrences

and outputs the number of occurrences per word. The output partitions of reduce can then

easily be merged to a combined result since two partitions do not share any key.

There are several frameworks that implement the MapReduce programming model. Hadoop

[Fou06] is the most popular implementation throughout the scientific community. It is

free, easy to setup, and well documented. We therefore implemented and evaluated our

approaches with Hadoop. Most MapReduce implementations utilize a distributed file sys-

tem (DFS) such as the Hadoop distributed file system [Bor07]. The input data is initially

stored partitioned, distributed, and replicated across the DFS. Partitions are redistributed

across the DFS in the transition from map to reduce. The output of each reduce call is

written to the DFS.

47

Figure 2: Simplified general entity resolution workflow

3 Entity resolution with MapReduce

In this work we consider the problem of entity resolution (deduplication) within one

source. The input data source S = {ei} contains a finite set of entities ei. The task is

to identify all pairs of entities M = {(ei, ek) | ei, ek ∈ S} that are regarded as duplicates.

Figure 2 shows a simplified generic entity resolution workflow. The workflow consists of

a blocking strategy and a matching strategy. Blocking semantically divides a data source

S into possibly overlapping partitions (blocks) bi, with S =
⋃

bi. The goal is to restrict

entity comparison to pairs of entities that reside in the same block. The partitioning into

blocks is usually done with the help of blocking keys based on the entities’ attribute values.

Blocking keys utilize the values of one or several attributes, e.g., product manufacturer (to

group together all products sharing the same manufacturer) or the combination of manu-

facturer and product type. Often, the concatenated prefixes of a few attributes form the

blocking key. A possible blocking key for publications could be the combination of the

first letters of the authors’ last names and the publication year (similar to the reference list

in this paper).

The matching strategy identifies pairs of matching entities of the same block. Matching

is usually realized by pairwise similarity computation of entities to quantify the degree

of similarity. A matching strategy may also employ several matchers and combine their

similarity scores. As a last step the matching strategy classifies the entity pairs as match or

non-match. Common techniques include the application of similarity thresholds, the incor-

poration of domain-specific selection rules, or the use of training-based models. Our entity

resolution model abstracts from the actual matcher implementation and only requires that

the matching strategy returns the list of matching entity pairs.

The realization of the general entity resolution workflow with MapReduce is relatively

straightforward by implementing blocking within the map function and by implementing

matching within the reduce function. To this end, map first determines the blocking key

for each entity. The MapReduce framework groups entities with the same blocking key to

blocks and redistributes them. The reduce step then matches the entities within one block.

Such a procedure shares similarities with the join computation in parallel database systems

[DG92]. There, the join key (instead of the blocking key) is used for data repartitioning to

allow a subsequent parallel join (instead of match) computation. The join (merge) results

are disjoint by definition and can thus easily merged to obtain the complete result.

48

Figure 3: Example of a general entity resolution workflow with MapReduce (n = 9 input

entities, m = 3 mappers, r = 2 reducers)

Figure 3 illustrates an example for n=9 entities, a-i, of an input data source S using m=3

mappers and r=2 reducers. First, the input partitioning (split) divides the input source S
into m partitions and assigns one partition to each mapper. Then, the individual mappers

read their (preferably) local data in parallel and determine a blocking key value K for

each of the input entities.1 For example, entity a has blocking key value 1. Afterwards all

entities are dynamically redistributed by a partition function such that all entities with the

same blocking key value are sent to the same reducer (node). In the example of Figure 3,

blocking key values 1 and 3 are assigned to the first reducer whereas key 2 is assigned

to the second node. The receivers group the incoming entities locally and identify the

duplicates in parallel. For example, the first reducer identifies the duplicate pairs (a, d)
and (c, i). The reduce outputs can finally be merged to achieve the overall match result.

Unfortunately, the sketched MapReduce-based entity resolution workflow has several lim-

itations:

Disjoint data partitioning: MapReduce uses a partition function that determines a sin-

gle output partition for each map output pair based on its key value. This approach

is suitable for many blocking techniques but complicates the realization of block-

ing approaches with overlapping blocks. For example, the sorted neighborhood

approach does not only compare entities sharing the same blocking key.

Load balancing: Blocking may lead to partitions of largely varying size due to skewed

key values. Therefore the execution time may be dominated by a single or a few

reducers. Load balancing and skew handling is a well-known problem in parallel

database systems [DNSS92]. The adaptation of those techniques to the MapReduce

paradigm is beyond the scope of this paper and left as a subject for future work.

1Figure 3 omits the map input keys for simplicity.

49

Figure 4: Example execution of sorted neighborhood with window size w = 3

Memory bottlenecks: All entities within the same block are passed to a single reduce

call using an iterator. The reducer can only process the data row-by-row similar

to a forward SQL cursor. It does not have any other options for data access. On

the other hand, the matching requires that all entities within the same reduce block

are compared with each other. The reducer must therefore store all entities in main

memory (or must make use of other external memory) which can lead to serious

memory bottlenecks. The memory bottleneck problem is partly related to the load

balancing problem since skewed data may lead to large blocks which tighten the

memory problem. Possible solutions have been proposed in [VCL10]. However,

memory issues can also occur with a (perfect) uniform key distribution.

In this work we focus on the first challenge and propose two approaches how the popular

and efficient Sorted Neighborhood blocking method SN can be realized within a MapRe-

duce framework. As we will discuss, the SN approach is less affected by load balancing

problems. Moreover, the risk for memory bottlenecks is reduced since the row-by-row

process matches the SN’s sliding window approach very well.

4 Sorted Neighborhood with MapReduce

Sorted neighborhood (SN) [HS95] is a popular blocking approach that works as follows. A

blocking key K is determined for each of n entities. Typically the concatenated prefixes of

a few attributes form the blocking key. Afterwards the entities are sorted by this blocking

key. A window of a fixed size w is then moved over the sorted records and in each step all

entities within the window, i.e., entities within a distance of w − 1, are compared.

Figure 4 shows a SN example execution for a window size of w = 3. The input set consists

of the same n = 9 entities that have already been employed in the example of Figure 3.

The entities (a-i) are first sorted by their blocking keys (1, 2, or 3). The sliding window

then starts with the first block (a, d, b) resulting in the three pairs (a, d), (a, b), and (d, b)
for later comparisons. The window is then moved by one step to cover the block (d, b, e).

50

This leads to two additional pairs (d, e) and (b, e). This procedure is repeated until the

window has reached the final block (c, g, i). Figure 4 lists all pairs generated by the sliding

window. In general, the overall number of entity comparisons is (n− w/2) · (w − 1).

The SN approach is very popular for entity resolution due to several advantages. First, it

reduces the complexity from O(n2) (matching n input entities without blocking) to O(n)+
O(n·log n) for blocking key determination and sorting and O(n·w) for matching. Thereby

matching large datasets becomes feasible and the window size w allows for a dedicated

control of the runtime. Second, the SN approach is relatively robust against a suboptimal

choice of the blocking key since it is able to compare entities with a different (but similar)

blocking key. The SN approach may also be repeatedly executed using different blocking

keys. Such a multi-pass strategy diminishes the influence of poor blocking keys (e.g.,

due to dirty data) whilst still maintaining the linear complexity for the number of possible

matches. Finally the linear complexity makes SN more robust against load balancing

problems, e.g., if many entities share the same blocking key.

The major difference of SN in comparison to other blocking techniques is that a matcher

does not necessarily only compare entities sharing the same blocking key. For example,

entities d and b have different blocking keys but need to be compared according to the

sorted neighborhood approach (see Figure 4). On the other hand, one of the key concepts

of MapReduce is that map input partitions are processed independently. This allows for a

flexible parallelization model but makes it challenging to group together entities within a

distance of w since a mapper has no access to the input partition of other mappers.

Even if we assume that a mapper can determine the relevant entity sets for each entity2,

the general approach as presented in Section 3 is not suitable. This is due to the fact

that the sliding window approach of SN leads to heavily overlapping entity sets for later

comparison. In the example of Figure 4, the sliding window produces the blocks {a, d, b}
and {d, b, e} among others. The general MapReduce-based entity resolution approach is,

of course, applicable, but would expend unnecessary resources. First of all, almost all

entities appear in w blocks and would therefore appear w times in the map output. Finally,

the overlapping blocks would cause the generation of duplicate pairs in the reduce step,

e.g., (d, b) in the above mentioned example.

We therefore target a more efficient MapReduce-based realization of SN and, thus, adapt

the approach described in Section 3. The map function determines the blocking key for

each input entity independently. The map output is then distributed to multiple reducers

that implement the sliding window approach for each reduce partition. For example, in the

case of two reducers one may want to send all entities of Figure 4 with blocking key ≤ 2
to the first reducer and the remaining entities to the second reducer. The analysis of this

scenario reveals that we have to solve mainly two challenges to implement a MapReduce-

based SN approach.

Sorted reduce partitions: The SN approach assumes an ordered list of all entities based

on their blocking keys. A repartitioning must therefore preserve this order, i.e., the

map output has to make sure that all entities assigned to reducer Rx have a smaller

(or equal) blocking key than all entities of reducer Rx+1. This allows each reducer

2For example, this could be realized by employing a single mapper only.

51

Figure 5: Example execution of sorted data partitioning with a composite key consisting of

a blocking key and a partition prefix. The composite key ensures that the reduce partitions

are ordered. If the sliding window approach (w = 3) is applied to both reduce partitions,

it is only able to identify 12 out of the 15 SN correspondences (as shown in Figure 4).

The pairs (f, c), (h, c), and (h, g) can not be found since the involved entities reside in

different reduce partitions.

to apply the sliding window approach on its partition. We will address the sorted

data repartitioning by employing a composite key approach that relies on a partition

prefix (see Section 4.1).

Boundary entities: The continuous sliding window of SN requires that not only entities

within a reduce partition but also across different reduce partitions have to be com-

pared. More precisely, the highest v < w entities of a reduce partition Rx need to

be compared with the w − v smallest entities of the succeeding partition Rx+1. In

the following, we call those entities boundary entities. For simplicity we assume

that there is no partition that holds less than w entities. Therefore it is sufficient to

only compare entities of two succeeding reducers what is surely the common case.

We propose two approaches (JobSN and RepSN) that employ multiple MapReduce

computation steps and data replication, respectively, to process boundary entities

and, thus, to map the entire SN algorithm to a MapReduce computation (Sections 4.2

and 4.3).

4.1 Sorted Reduce Partitions

We achieve sorted reduce partitions (SRP) by utilizing an appropriate user-defined function

p for data redistribution among reducers in the map phase. Data redistribution is based on

52

the generated blocking key k, i.e., p is a function p : k → i with 1 ≤ i ≤ r and r is

the number of reducers. A monotonically increasing function p (i.e., p(k1) ≥ p(k2) if

k1 ≥ k2) ensures that all entities assigned to reducer i have a smaller or equal blocking

key than any entity processed by reducer i+ 1.

The range of possible blocking key values is usually known beforehand for a given dataset

because blocking keys are typically derived from numeric or textual attribute values. In

practice simple range partitioning functions p may therefore be employed.

The execution of SRP is illustrated in Figure 5 for m = 3 mappers and r = 2 reducers.

It uses the same entities and blocking keys as the example of Figure 4. In this example

the function p is defined as follows: p(k) = 1 if k ≤ 2, otherwise p(k) = 2. The

map function first generates the blocking key k for each input entity and adds p(k) as a

prefix. In the example of Figure 5, the blocking key value for c is 3 and p(k) = 2. This

results in a combined key value 2.3. The partitioning then distributes the (key,value)

pairs according to the partition prefix of the key. For example, all keys starting with 2 are

assigned to the second reducer. Moreover, the input partitions for each reducer are sorted

by the (combined) key. Since all keys of reducer i start with the same prefix i, the sorting

of the keys is practically done based on the actual blocking key.

Afterwards the reducer can run the sliding window algorithm and, thus, generates the

correspondences of interest. Figure 5 illustrates the resulting correspondences as reduce

output (B=Blocking). For entity resolution the reduce function will apply a matching

approach to the correspondences. Reduce will therefore likely return a small subset of B.

However, since we investigate in blocking techniques we leave B as output to allow for

comparison with other approaches (see Section 4.2 and 4.3).

The sole use of SRP does not allow for comparing entities with a distance ≤ w that spread

over different reducers. For example, standard SN determines the correspondence (h, c)
(see Figure 4) that can not be generated since h and c are assigned to different reducers.

For r reducers and a window size w, SRP misses (r − 1) · w · (w − 1)/2 boundary corre-

spondences. We therefore present two approaches, JobSN and RepSN, that build on SRP

but are also able to deal with boundary entities.

4.2 JobSN: Sorted Neighborhood with additional MapReduce job

The JobSN approach utilizes SRP and employs a second MapReduce job afterwards that

completes the SN result by generating the boundary correspondences. JobSN makes

thereby use of the fact that MapReduce provides sorted partitions to the reducer. A re-

ducer can therefore easily identify the first and the last w− 1 entities during the sequential

execution. Those entities have counterparts in neighboring partitions, i.e., the last w − 1
entities of a reducer relate to the first w − 1 entities of the succeeding reducer. In general,

all reducers output the first and last w − 1 entities with the exception of the first and the

last reducer. The first (last) reducer only returns the last (first) w − 1 entities.

The pseudo-code for JobSN is shown in the appendix in Algorithm 1. Figure 6 illustrates

a JobSN execution example. It uses the same data of Figure 5. The map step of the first

53

Figure 6: Example execution of SN with additional MapReduce job (JobSN, w = 3).

The far left box is the reduce step of the first job. Its output is the input to the second

MapReduce job.

job is identical with SRP of Figure 5 and omitted in Figure 6 to save space. The reduce

step is extended by an additional output. Besides the list of blocking correspondences B,

the reducer also emits the first and last w − 1 entities.

JobSN realizes the assignment of related boundary elements with an additional boundary

prefix that specifies the boundary number. Since the last w − 1 entities of reducer i < r
refer to the ith boundary, the keys of the last w−1 entities are prefixed with i. On the other

hand, the first w−1 entities of the succeeding reducer i+1 also relate to the ith boundary.

Therefore the keys of the first w − 1 entities of reducer i > 1 are prefixed with i− 1. The

first reducer in the example of Figure 6 prefixes the last entities (f and h) with 1 and the

second reducer prefixes the first entities (c and g) with 1, too. Thereby the key reflects data

lineage: The actual blocking key of entity c is 3 (see, e.g., Figure 4), it was assigned to

reducer number 2 during the SRP (Figure 5), and it is associated with boundary number 1

(Figure 6).

The second MapReduce job of JobSN is straightforward. The map functions leaves the

input data unchanged. The map output is then redistributed to the reducers based on the

boundary prefix. The reduce function then applies the sliding window but filters corre-

spondences that have already been determined in the first MapReduce job. For example,

(f, h) does not appear in the output of the second job since this pair is already determined

by SRP. As mentioned above, this knowledge is encoded in the lineage information of the

key because those entities share the same partition number.

The JobSN approach generates the complete SN result at the expense of an additional

54

Figure 7: Example execution of sorted neighborhood with entity replication (RepSN, w =
3). Entities are replicated within in the map function (below solid line). Replicated entities

are written in italic type.

MapReduce job. We expect the overhead for an additional job to be acceptable and we

will evaluate JobSN’s performance in Section 5.

4.3 RepSN: Sorted Neighborhood with entity replication

The RepSN approach aims to realize SN within a single MapReduce job. It extends SRP

by the idea that each reducer i > 1 needs to have the last w − 1 entities of the preceding

reducer i − 1 in front of its input. This would ensure that the boundary correspondences

appear in the reducer’s output. However, the MapReduce paradigm is not designed for

mutual data access between different reducers. MapReduce only provides options for

controlled data replication within the map function.

The RepSN approach therefore extends the original SRP map function so that map repli-

cates an entity that should be send to both the respective reducer and its successor. For

all but the last reduce partition r, the map function thus identifies the w − 1 entities with

the highest blocking key k. It first outputs all entities and adds the identified boundary

entities afterwards. Similar to SRP, an entity key is determined by the blocking key k plus

a partition prefix p(k). To distinguish between original entities and replicated boundary

entities, RepSN adds an additional boundary prefix. For all original entities this boundary

prefix is the same as the partition number, i.e., the composite key is p(k).p(k).k. The

55

boundary prefix for replicated entities is the partition number of the succeeding reducer,

i.e., the composite key is (p(k) + 1).p(k).k.

RepSN is described in the appendix in Algorithm 2. Figure 7 illustrates an example execu-

tion of RepSN. The example employs r = 2 reducers and window size w = 3. Therefore

all mappers identify the w − 1 = 2 entities with the highest key of partition 1. The output

of each map function is divided into two parts. The upper part (above the solid line) is

equivalent to the regular map output of SRP. The only (technical) difference is that the

partition prefix is duplicated. The lower part (below the solid line) of the map output con-

tains the replicated entities. Consider the second map function: All three entities (d, e, and

f) are assigned to the partition 1 and e and f are replicated because they have the highest

keys. The keys of the replicated data start with the succeeding partition 2. This ensures

that e and f are send to both reducer 1 and reducer 2.

The map output is then redistributed to the reduce functions based on the boundary prefix.

Furthermore, MapReduce provides a sorted list as input to the reduce functions. Due

to the structure of the composite key, the replicated entities appear at the beginning of

each reducer input. Replicated entities share the same boundary prefix but have a smaller

partition prefix. The reduce function then applies the sliding window approach but only

returns correspondences involving at least one entity of the actual partition.

In the example of Figure 7, input and output of the first reducer are equivalent to SRP (see

Figure 5). The second reducer receives a larger input partition. It ignores all replicated

entities but the w− 1 = 2 highest (f and h). The output is the union of the corresponding

SRP output and the corresponding boundary reduce output of JobSN.

RepSN allows for an entire sorted neighborhood computation within a single MapReduce

job at the expense of some data replication. Since the MapReduce model does not provide

any global data access3 during the computation, it is not possible to identify only the

necessary entities for processing the boundary elements. Rather each map function has to

identify and replicate possibly relevant entities based on its local data. Each mapper has

to replicate w− 1 entities for all but the last partition. The maximum number of replicated

entities is therefore m·(r−1)·(w−1). This number is independent from the size n of input

entities and may therefore be comparatively small for large datasets. We will evaluate the

overhead of data replication and data transfer in Section 5. In particular we will compare

it against the JobSN overhead for scheduling and executing an additional MapReduce job.

5 Experiments

We conducted a set of experiments to evaluate the efficiency of the proposed approaches.

After a description of the experimental setup we study the scalability of our Sorted Neigh-

borhood approaches. Afterwards we will discuss the effects of data skew and show its

influence on execution time.

3Hadoop as the most popular implementation MapReduce offers a so called distributed cache. However, the

primary purpose of this mechanism is to upfront copy read-only data (like files or archives) needed by the job to

the particular nodes.

56

5.1 Experimental setup

We run our experiments on up to four nodes with two cores. Each node has an In-

tel(R) Core(TM)2 Duo E6750 2x2.66GHz CPU, 4GB memory and runs a 64-bit Debian

GNU/Linux OS with a Java 1.6 64-bit server JVM. On each node we run Hadoop 0.20.2.

Following [VCL10] we made the following changes to the Hadoop default configuration:

We set the block size of the DFS to 128MB, allocated 1GB to each Hadoop daemon and

1GB virtual memory to each map and reduce task. Each node was configured to run at most

two map and reduce tasks in parallel. Speculative execution was turned off. Both master

daemons for managing the MapReduce jobs and the DFS run on a dedicated server. We

used Hadoop’s SequenceFileOutputFormat with native bzip2 block compression to serial-

ize the output of mappers and reducers that was further processed. Sequence files can hold

binary (key, value) pairs what conceptually allowed us to deal with (String, String[])
instead of (String, String) pairs. Hence, we could directly access the ith attribute value

of an entity during matching in comparison to split a string at runtime.

The input dataset4 for our experiments contains about 1.4 Mio. publication records. To

compare two publications we executed two matchers (edit distance on title, TriGram on

abstract) and calculated the average of the two results. Pairs of entities with an average

similarity score of at least 0.75 were regarded as matches. We applied an internal optimiza-

tion by skipping the execution of the second matcher if the similarity after the execution of

the first matcher was too low (i.e., ≤ 0.5) for reaching the combined similarity threshold.

To group similar entities into blocks we used the lowercased first two letters of the title as

blocking key.

5.2 Sorted Neighborhood

We evaluate the absolute runtime and the relative speedup using two window sizes of

10 and 1000. The additional MapReduce job of JobSN was executed with one reducer

(r = 1). To ensure comparability for different numbers of mappers and reducers we used

the same manually defined function in each experiment. It partitions the set of entities into

10 blocks and targets to assign the same number of entities to each block. The resulting 10

reduce tasks are executed by at most 8 reducers (see Section 5.3 for further discussion).

Figure 8 shows execution times and speedup results for up to 8 mappers and 8 reducers

for the two proposed implementations. The configurations with m = r = 1 refers to

sequential execution on a single node, the one with m = r = 2 refers to the execution on

a single node utilizing both cores and so on. For the small window size w = 10, RepSN

slightly outperforms JobSN due to the scheduling overhead of JobSN for the additional

MapReduce job. The execution time of both RepSN and LocSN could be reduced from

approximately 10.5 to about 2.5-3 minutes resulting in a relative speedup of up to 4 for 8

cores. For the larger window size w = 1000, the execution times scale almost linearly, for

instance the execution time for RepSN could be reduced from approximately 9 to merely

4http://asterix.ics.uci.edu/data/csx.raw.txt.gz

57

(a) window size w = 10 (b) window size w = 1000

Figure 8: Comparison of the two Sorted Neighborhood implementations

1.5 hours. We observe a nearly linear speedup for the entire range of up to 4 nodes and 8

cores. The runtime of the different implementations differ only slightly. Differences can

only be observed for a small amount of parallelism, i.e., RepSN was 10 minutes slower

for w = 1000 in the sequential case. Beginning with m = r = 4 RepSN completed

faster than JobSN. The reasons for the suboptimal speedup values (about 6 for 8 cores)

are caused by design and implementation choices of MapReduce/Hadoop to achieve fault

tolerance, e.g., materialization of (intermediate) results between map and reduce.

5.3 Data skew

We finally study the effects of data skew and use RepSN for this experiment. Practical

data skew handling has been studied in the context of parallel DBMS [DNSS92] but has

not yet been incorporated in our implementation. Similar to the hash join computation

in parallel DBMS, the application of any partitioning (hash) function p as described in

Section 4.1 is susceptible to data skew and resulting load imbalances. This is because

the combination of blocking key skew together with key-based partitioning may lead to

partitions of largely varying size so that the total execution time is dominated by a single

or few reduce task. One can, of course, reduce the impact of the key skew by choosing a

good partitioning function that assigns a different number of keys to the individual reduce

tasks and, thus, tries to balance the number of entities per reduce task.5 However, the

impact of a partitioning function is limited due to the following two restrictions. First, an

arbitrary assignment of blocking keys to reduce tasks is not possible because SN requires

sorted reduce partitions. Second, processing (very) large blocks can not be distributed to

multiple reduce tasks because the MapReduce paradigm requires entities sharing the same

blocking key to be processed within the same reduce task.

We ran our experiments on all 4 nodes (8 mappers and 8 reducers) with a window size

5Hadoop comes with features (InputSampler and TotalOrderPartitioner) that allows to sample the output of a

MapReduce job and to estimate a suitable partitioning function p that avoids varying sized map output partitions

and ensures totally ordered keys.

58

p g

Manual 0.13

Even10 0.30

Even8 0.32

Even8 40 0.42

Even8 55 0.54

Even8 70 0.63

Even8 85 0.76

Table 1: Partitioning functions

and resulting data skew

Figure 9: Execution time of RepSN for var-

ious degrees of data skew (w = 100)

Figure 10: Influence of data skew (m = r = 8)

w = 100. To quantify the inequality of the key distribution in the dataset we utilize the

Gini coefficient g =
2·
∑

n

i=1
i·yi

n·
∑

n

i=1
yi

− n+1

n
, whereas yi is the number of entities in partition i

and yi ≤ yi+1. A value of 0 expresses total equality and a value of 1 maximal inequality.

We evaluated the partition strategies shown in Table 1 exhibiting different degrees of data

skew as indicated by their Gini coefficient. In addition to the manually defined partitioning

function used in Section 5.2 with almost equally-sized partitions we evenly partitioned the

key space into 10 and 8 intervals (Even10, Even8). Finally we used Even8 but modified

the blocking keys so that 40%, 55%, 70% and 85%, respectively, of all entities fall in the

last partition. The runtime results for the different partitioning strategies are illustrated

in Figure 9. The manual partitioning strategy that was tuned for equally-sized partitions

performed best, while the most skewed configuration suffered from a more than threefold

execution time. Even10 completed slightly (one minute) faster than Even8 because of

its smaller partitions allowing the 8 reducers processing several small partitions while a

large partition is matched (improved load balancing potential). For Even8 40 - Even8 85

we observe significant increases of the execution time with a rising degree of data skew.

Clearly the influence of data skew will increase for larger window sizes since more entities

within a partition have to be compared bye one reducer.

The observed problems are MapReduce-inherent because the programming model de-

mands that all values with the same key are processed by the same reducer. A majority of

values for one or a small subset of the dataset’s keys does not allow effective parallel data

processing. There is no skew handling mechanism in MapReduce except the redundant

execution of outstanding map or reduce task at the end of a job (speculative execution).

However, this helps only to deal with partially working or misconfigured stragglers. There-

fore it becomes necessary to investigate in load balancing mechanisms for the MapReduce

paradigm.

59

6 Related work

Entity resolution is a very active research topic and many approaches have been proposed

and evaluated as described in recent surveys [EIV07, KR10]. Surprisingly, there are only

a few approaches that consider parallel entity resolution. First ideas for parallel matching

were described in the Febrl system [CCH04]. The authors show how the match compu-

tation can be parallelized among available cores on a single node. Parallel evaluation of

the Cartesian product of two sources considering the three input cases (clean-clean, clean-

dirty, dirty-dirty) is described in [KL07].

[KKH+10] proposes a generic model for parallel processing of complex match strategies

that may contain several matchers. The parallel processing is based on general partitioning

strategies that take memory and load balancing requirements into account. Compared to

this work [KKH+10] allows the execution of a match workflow on the Cartesian product

of input entities. This is done by partitioning the set of input entities and generating match

tasks for each pair of partitions. A match task is then assigned to any idle node in a

distributed match infrastructure with a central master node. The advantage of this approach

is the high flexibility for scheduling match tasks and thus for dynamic load balancing. The

disadvantage is that only the matching itself is executed in parallel. Blocking is done

upfront on the master node. Furthermore in this work we rely on an widely used parallel

processing framework that hides the details of parallelism and therefore is less error-prone.

We are only aware of one previous approach for parallel entity resolution on a cloud infras-

tructure [VCL10]. The authors do not investigate Sorted Neighborhood blocking but show

how a single token-based string similarity function can be realized with MapReduce. The

approach is based on a complex workflow consisting of several MapReduce jobs. This ap-

proach suffers from similar load balancing problems as observed in Section 5.3 because all

entities that share a frequent token are compared by one reducer6. In contrast to our Sorted

Neighborhood approach large partitions for frequent tokens that do not fit into memory

must be handled separately. This is because all entities that contain a specific token have

to be compared with each other instead of comparing only entities with a maximum dis-

tance of less than w. Compared to [VCL10], we are not limited to a specific similarity

function but can apply a complex match strategy for each pair of entities within a window.

Furthermore as explained in Section 3 Sorted Neighborhood can be substituted with other

blocking techniques, e.g., Standard Blocking or N-gram indexing.

7 Conclusions and outlook

We have shown how entity resolution workflows with a blocking strategy and a match

strategy can be realized with MapReduce. We focused on parallelizing Sorted neighbor-

hood blocking and proposed two MapReduce-based implementations. The evaluation of

our approaches demonstrated their efficiency and scalability in comparison to sequential

6The authors could slightly reduce the data skew by redistributing data based on the infrequent prefix tokens

of a record’s attribute value.

60

entity resolution. We also pointed out the need for incorporating load balancing and skew

handling mechanisms with MapReduce.

There are further limitations of MapReduce and the utilized implementation Hadoop such

as insufficient support for pipelining intermediate data between map and reduce jobs.

There are other parallel data processing frameworks like [WK09] that support different

types of communication channels (file, TCP, in-memory) and provide a better support for

different input sets. Furthermore there are concepts like [YDHP07] that propose to adapt

and extend MapReduce to simplify set operations (Cartesian product) on heterogeneous

datasets.

In future work we plan to investigate load balancing and data partitioning mechanisms for

MapReduce.

References

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. Technical
report, EECS Department, University of California, Berkeley, 2009.

[BCC03] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking meth-
ods for record linkage. In ACM SIGKDD, volume 3, pages 25–27, 2003.

[Bor07] Dhruba Borthakur. The hadoop distributed file system: Architecture and design.
Hadoop Project Website, 2007.

[BS06] Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Methodologies and
Techniques. Data-Centric Systems and Applications. Springer, 2006.

[CCH04] Peter Christen, Tim Churches, and Markus Hegland. Febrl - A Parallel Open Source
Data Linkage System. In PAKDD, pages 638–647, 2004.

[DG92] David DeWitt and Jim Gray. Parallel database systems: the future of high performance
database systems. Commun. ACM, 35(6):85–98, 1992.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, pages 137–150, 2004.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[DNSS92] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri. Practical
Skew Handling in Parallel Joins. In VLDB, pages 27–40, 1992.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
Record Detection: A Survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[Fou06] Apache Software Foundation. Hadoop. http://hadoop.apache.org/

mapreduce/, 2006.

[HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The Merge/Purge Problem for Large
Databases. In SIGMOD Conference, pages 127–138, 1995.

61

[KKH+10] Toralf Kirsten, Lars Kolb, Michael Hartung, Anika Gross, Hanna Köpcke, and Erhard
Rahm. Data Partitioning for Parallel Entity Matching. In 8th International Workshop
on Quality in Databases, 2010.

[KL07] Hung-Sik Kim and Dongwon Lee. Parallel linkage. In CIKM, pages 283–292, 2007.

[KR10] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A comparison.
Data Knowl. Eng., 69(2):197–210, 2010.

[KTR10a] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution ap-
proaches on real-world match problems. In VLDB, 2010.

[KTR10b] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Learning-Based Approaches for
Matching Web Data Entities. IEEE Internet Computing, 14:23–31, 2010.

[LD10] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce. Synthesis
Lectures on Human Language Technologies, 3(1):1–177, 2010.

[RD00] Erhard Rahm and Hong Hai Do. Data Cleaning: Problems and Current Approaches.
IEEE Data Eng. Bull., 23(4):3–13, 2000.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using MapReduce. In SIGMOD Conference, pages 495–506, 2010.

[WK09] Daniel Warneke and Odej Kao. Nephele: efficient parallel data processing in the cloud.
In SC-MTAGS, 2009.

[YDHP07] Hung-Chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and Douglas Stott Parker. Map-
reduce-merge: simplified relational data processing on large clusters. In SIGMOD
Conference, pages 1029–1040, 2007.

A Algorithms

Algorithm 1 and Algorithm 2 show the pseudo-code for the two proposed Sorted Neigh-

borhood implementation JobSN and RepSN introduced in sections 4.2 and 4.3. For sim-

plicity, we use a function StandardSN that implements the standard Sorted Neighbor-

hood approach, i.e., that moves the window of size w over a sorted list of entities and

outputs matching entity pairs (Algorithm 1 line 9, 26 and Algorithm 2 line 31).

Throughout the two algorithms r denotes the configured number of reducers for the MapRe-

duce job. The partitioning function p : k → i with 1 ≤ i ≤ r determines the reducer ri
to which an entity with the blocking key value k is repartitioned. A key of the form x.y
denotes a composed key of x and y. Composed keys are compared component-wise. The

comments indicate which parts of the composite keys are used for map-side repartitioning

and reduce-side grouping of entities.

For simplicity, the pseudo-code of Algorithm 1 does not filter correspondences that have

been already determined in the first phase. This can be easily achieved by comparing only

entities whose second component of the composed key differ. In Algorithm 2 we use two

extra functions in addition to map and reduce. The function map configure is executed

before a mapper executes a map task and map close before termination of a map task,

respectively.

62

Algorithm 1: JobSN

1 // --- Phase 1 ---

2 map(keyin=unused, valuein=entity)

3 k ← generate blocking key for entity;

4 ri ← p(k) ; // reducer to which entity is assigned by p

5 // Use composite key to partition by ri

6 output(keytmp=ri.k, valuetmp=entity)

7 // group by ri, order by composed key

8 reduce(keytmp=ri.k, list(valuetmp)=list(entity))

9 StandardSN(list(entity), w);

10 first ← first w − 1 entities of list(entity);

11 last ← last w − 1 entities of list(entity);

12 if ri > 1 then

13 bound ←ri-1;

14 foreach entity ∈ first do

15 output(keyout=bound.ri.k, valueout=entity)

16 if ri < r then

17 bound ← ri;

18 foreach entity ∈ last do

19 output(keyout=bound.ri.k, valueout=entity)

20 // --- Phase 2 ---

21 map(keyin=bound.ri.k, valuein=entity)

22 // Use composite key to partition by bound

23 output(keytmp=bound.ri.k, valuetmp=entity)

24 // group by bound, order by composed key

25 reduce(keytmp=bound.ri.k, list(valuetmp)=list(entity))

26 StandardSN(list(entity), w);

63

Algorithm 2: RepSN

1 map configure

2 // list of the entities with the w-1 highest

3 // blocking keys for each partition i<r

4 foreach i ∈ {1, . . . , r − 1} do

5 rep i ← [];

6 map(keyin=unused, valuein=entity)

7 k ← generate blocking key for entity;

8 ri ← p(k) ; // reducer to which entity is assigned by p

9 bound ← ri;

10 if ri < r then

11 if sizeOf(rep ri)<w-1 then

12 append(rep ri , entity);

13 else

14 min ← determine entity from rep ri with smallest blocking key;

15 kmin ← blocking key of min;

16 if k >kmin then

17 replace(rep ri , min, entity);

18 // Use composite key to partition by bound

19 output(keytmp=bound.ri.k, valuetmp=entity)

20 map close

21 foreach i ∈ {1, . . . , r − 1} do

22 ri ← i;

23 bound ← ri +1;

24 foreach entity ∈ rep i do

25 // prefix key with ri+1 to assign replicated

26 // entities to succeeding reducer

27 output(keytmp=bound.ri.k, valuetmp=entity)

28 // group by bound, order by composed key

29 reduce(keytmp=bound.ri.k, list(valuetmp)=list(entity))

30 remove all entities with bound �= ri from the head of list(entity) except the last w − 1;

31 StandardSN(list(entity), w);

64

	Vorwort
	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration vonDatenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex EventProcessing Systems
	Fast and Easy Delivery of Data Mining Insights toReporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-TenantApplications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery throughEnriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Toolfor Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

