
Flexible and Efficient Sensor Data

Processing – A Hybrid Approach

Claas Busemann, Christian Kuka, Daniela Nicklas, Susanne Boll

OFFIS - Institute for Information Technology

Oldenburg, Germany

busemann|kuka@offis.de

http://www.offis.de

Carl von Ossietzky Universität

Oldenburg, Germany

daniela.nicklas|susanne.boll@uni-oldenburg.de

Abstract: The integration of various sensor data into existing software systems is be-
coming increasingly important for companies and even private users. As the number of
embedded devices of all sorts (sensors, mobile phones, cameras etc.) also constantly
increases, the development of flexible sensor applications gets more and more diffi-
cult. These applications have to handle a large number of sensors transmitting their
data in various formats using different protocols. Middleware technologies are a good
way to hide the complexity of communication protocols and data processing from the
application. However, integrating efficient sensor data processing into a middleware
requires several design choices which depend on the planned applications. Usually
such systems are either efficient, allowing the processing of large numbers of data
streams, or flexible, allowing the easy modification of the processing during runtime.
In this paper a hybrid approach is introduced combining the benefits of two popular
processing technologies, Service Oriented Architectures (SOA) and Data Stream Man-
agement Systems (DSMS), and by that enable the processing of large numbers of data
streams while at the same time the system can be flexibly modified. Therefore these
two technologies are analyzed to identify the benefits and disadvantages depending on
their flexibility and efficiency.

1 Introduction

Today, many low cost and easy to install sensors are available, many more in the future.

However, to realize even simple sensor-based applications, the effort is quite high: there

are many different interfaces and standards to communicate with the sensor systems. The

data read from the sensors is of variable quality and has often to be interpreted, aggregated

or otherwise preprocessed before being usable by applications. Since the heterogeneity

of sensor systems is so high, applications are bound to certain vendors or proprietary so-

called standards. Hence, even if more and more sensor systems are already installed, it is

hard to re-use the effort of pre-processing for other applications. Thus, future middleware

123

architectures for sensor-based applications have to fulfill two major requirements that are

often contradicting: flexibility and efficiency. One solution for the flexible orchestration

of reusable sensor processing services could be a service-oriented architecture using the

Sensor Web Enablement [Ope] framework. Web service technology has many benefits re-

garding extensibility and standardization. They mostly rely on an event driven processing

paradigm, where active services push business events on a service bus and other services

subscribe to these basic events to provide higher level information (like complex event pro-

cessing engines). Finally, the end-user application receives only those events it is really

interested in.

When dealing with raw sensor data, this paradigm gets to its limits. Not every sensor

measurement is a meaningful event, and the throughput of event buses is not suited for high

loads of input data, as we can show in our evaluation. Hence, to close the gap between the

high level service oriented world and the low level sensor network world we introduce an

hybrid approach: for pre-processing high loads of sensor data, a data stream management

system is used which acts as a configurable service within a service oriented architecture.

Our evaluation shows that this approach dramatically increases the possible amount of

incoming sensor data. The remainder of this paper is organized as follows: Section 2

discusses the related work. In Section 3 two popular sensor data processing technologies

are analyzed followed by the description of our hybrid approach in Section 4. Section 5

contains a performance evaluation of the approach. Finally, section 6 draws a resume.

2 Related Work

Sensor data processing has been integrated into several middlewares like the Oracle Sen-

sor Edge Server [Ora10b], the SensWeb platform [Mic08, SNL+06], the WISE platform

[PHHL04] or the FireEagle platform [Yah07]. These systems use service oriented archi-

tectures (SOA) to realize the sensor data processing. This allows the developers to process

the incoming sensor data using services and after that provide it to the application. SOA

based processing systems are very flexible as they allow the simple integration of applica-

tion specific services and can easily be orchestrated. User access administration can also

be easily integrated, as every service is able to check the access permissions. However,

a SOA based system usually cannot handle high-volume streams of incoming sensor data

because of the administration overhead that goes along with service oriented architectures.

Other sensor middlewares like the Nexus platform [GBH+05], SStreaMWare [GRL+08]

or the GSN middleware [SA07] are based on Data Stream Management Systems (DSMS).

A DSMS is able to process high-volume streams of data in a fast and efficient way. There-

fore those systems provide the same extended relational algebra operators like database

management systems (DBMS). This algebra is extended through a temporal algebra to

perform aggregation and joins on datastreams. In the OpenSource Community there ex-

ist a wide range of DSMS implementations like Esper [Esp08] from Espertech, IEP [iep]

from the OpenESB community or TelegraphCQ [CCC+03]. As there is no public standard

for DSMS query languages, all these implementations are using their own query language

which are usually based on SQL. However, integrating application specific operators into

124

DSMS can be extremely complicated as every new operator has not only to be integrated

into the DSMS but also into the query language. Adding user access administration to

a DSMS can also be very complicateted, as most DSMS are not designed to handle user

access permissions.

3 Sensor Data Processing

In this section, two popular data processing technologies, Service Oriented Architectures

(SOA) and Data Stream Management Systems (DSMS), are analyzed. This is done by

evaluating existing open source systems which are based on one of these technologies. As

DSMS and SOA based processing technologies are significantly different from each other

the evaluation is separated for each of these. Finally, the features of both technologies are

compared to each other.

3.1 Service Oriented Architectures (SOA)

SOA based data processing systems are analyzed by identifying the benefits and disadvan-

tages of three popular open source SOA based systems. These are Service Mix 4 [Apa10]

developed by Apache Group, OpenESB [Ora10a] developed by Sun and PEtALS [OW210]

developed by OW2. As all of these systems are based on a service oriented architecture,

they all allow the simple definition of data processing. Therefore, the developer chooses

the services she needs to process the incoming sensor data. These can be services executed

inside of the SOA but also external services that run on a different server. After that she

defines in which order these services are used by linking them logically together. How-

ever, there are several features making SOA based systems extremely flexible. As they

usually follow the ”publish, find, bind” principle using a service broker they are able to

discover additional services at runtime. SOA systems usually can be clustered. This makes

it possible to run services with high memory or CPU usage on more powerful machines.

The deployment of new services without interacting with the running systems (hot deploy-

ment) is not supported by some systems. Some systems can be integrated into application

servers . This can be very useful when building web based sensor applications. Other sys-

tems are able to run as a standalone application which makes it easy to integrate them into

ordinary applications. The orchestration of services is often done using BPEL [WCL+05]

which is a widely accepted standard. Some systems are able to handle access permissions

to single services.

However, not all of these features are supported by every SOA implementation. Tab. 1

shows an overview of analyzed systems and the features they support.

The service oriented approach brings a lot of flexibility but it also slows down the process-

ing speed because of the administrative overhead. This is caused by the service broker,

which has to decide what service to use next. The use of external services also slows

down the system because of the communication overhead. If services are using different

125

ServiceMix 4 OpenESB PEtALS

Clustering + + +

Service Broker + + +

Hot Deployment + - +

Standalone + - +

Embedded - + -

Access Perm. + - +

Orchestration Camel, EIP BPEL BPEL

Table 1: SOA based Systems - Feature Overview

communication protocols, the conversion also increases the processing time. Beyond that,

external services can not be controlled as the developer has no influence on their behavior.

3.2 Data Stream Management Systems (DSMS)

Data Stream Management Systems (DSMS) are designed to process high-volume streams

of data in a fast and efficient way. Therefore those systems provide the same extended

relational algebra operators like database management systems (DBMS) extended through

a temporal algebra to perform aggregation and joins on data streams. However, DSMS

still differ from each other by features and algebra. In this section three popular open

source DSMS are analyzed: TelegraphCQ [CCC+03] developed by the Berkeley Uni-

versity, Odysseus [JBG+09] developed by the University Oldenburg and Esper [Esp08]

developed by EsperTech. As mentioned before, DSMS are usually controlled using a re-

lational algebra. This algebra is translated into a logical operator graph which is deployed

by the system. This graphs can be optimized by the system to make the processing more

efficient. Some DSMS support the static optimization of operator graphs, which is done

before the graph is deployed. Other systems are able to dynamically optimize the graph

while the system is running. Clustering is also supported by some of the systems, but

the implementations differ from each other. Odysseus for example realizes this by shar-

ing operators on multiple Odysseus instances using a P2P network, while TelegraphCQ

technically builds up a shared database which makes it possible to process the operator

graph on different instances of the system. DSMS can use different scheduling strategies

to optimize the memory and CPU usage. Some systems are able to use graph scheduling,

which means that every operator graph runs as an own thread and operators are processed

sequentially. Other systems allow operator scheduling, where every operator runs in its

own thread. There are also systems that allow hybrid scheduling in which case the single

operators or groups of operators run in an own thread. Another important feature is the

prioritization of operations inside the system. This can be handled by allowing to pri-

oritize a request to the system or allowing the prioritized processing of selected data by

adding a priority to the data tuples. Complex Event Processing (CEP) is used to analyze

data streams and search for patterns. As there is no public standard for DSMS, query lan-

126

guages like SQL for DBMS all the analyzed systems use their own query language which

are based on SQL. TelegraphCQ uses the Continues Query Language (CQL), Esper the

Event Pattern Language (EPL) and Odysseus SPARQL (for RDF tuple streams) and sSQL

(for relational tuple streams). Tab. 1 shows an overview of analyzed systems and the

features they support.

TelegraphCQ Odysseus Esper

Static Opti. - + -

Dynamic Opti. + - -

Clustering + + -

G. Scheduling + + +

O. Scheduling + + -

H. Scheduling - + -

Prioritization - + +

CEP - + +

Query Language CQL sSQL EPL

Table 2: DSMS Systems - Feature Overview

The data stream management approach brings a lot of efficiency when filtering and aggre-

gating data but also lacks the possibility to extend the available operators. This is caused

by the underlying system which is designed to process data while minimizing memory

and CPU usage. As the system has to know each operator at start time to be able to opti-

mize the operator graph and choose the right optimization strategy, the integration of new

operators is very complicated.

3.3 Service Oriented Architectures vs. Data Stream Management Systems

The previous sections show that depending on their features SOA based systems and

DSMS are primarily different. However, they still share the same application purpose

which is processing incoming data using predefined operators. Because of the underlying

architecture, SOA systems are extremely flexible. The main benefits of this architecture

are the flexible orchestration of services using accepted standards like BPEL, that services

can easily be added and modified, that the integration of external services is very easy and

that access permissions to services can be handled. The main disadvantage is that the SOA

slows down the processing time. Also an optimization of the operator graph is not possible

in a way comparable with the optimization inside a DSMS. External operators are easy to

integrate but they are also hard to control. This can effect the data processing as they may

stop working or change their behavior.

DSMS on the other side are extremely efficient. The main benefits of this architecture are

that it is possible to process data in a memory and CPU usage efficient way, that operator

graphs can be optimized, that the processing can be optimized using different scheduling

strategies, that queries can be prioritized and that complex events can be recognized. The

127

main disadvantages are that the integration of new operators is difficult, that operators can

not be deployed during runtime, that the integration of external operators usually is not

possible, that no standard query language exists and that access permissions to operators

can not be handled.

However, sensor data processing for applications which have to be flexible and at the same

time handle a huge amount of sensor data in a memory and CPU usage efficient way should

still be possible. Thats why we introduce our hybrid approach, which is explained in detail

in the next section.

4 Hybrid Approach

In this section, a hybrid system is introduced which is based on a SOA system and uses a

DSMS for efficient processing of sensor data. The basic idea is to reduce the number of

data the SOA system has to handle by processing standard operations inside of a DSMS. A

pure DSMS can not be used as it can not provide the flexibility that comes along with the

SOA system. A schematic view of the system can be found in Fig. 1. To realize this hybrid

system, the DSMS is integrated into the SOA system. Therefore a service container is built

around the DSMS. The service container is bidirectional connected with a bus system that

connects all services in the SOA. This allows the integration of the DSMS into the SOA

system as one of its services. To enable the communication between the SOA services

and the DSMS operators the sinks and sources of the DSMS are mapped as provider and

consumer endpoints for other services of the SOA. A provider endpoint receives sensor

data from other services. Each incoming message is transformed into the internal format

and pushed into the physical processing plan of the DSMS. Thereby the timestamp of

the messages are preserved for usage in timewindow operators. A consumer endpoint

publish the processed sensor data on the bus system for other services. Therefore a new

message that includes the processed measurements is generated every time the DSMS

produce a new output. This means that other services can not request older values. If

they are subscribed to the consumer endpoint they get the newest values from the bus

system instead. The service container creates those endpoints when a new sink or source is

registered through a processing query and publishes these endpoints for other services. The

container is also responsible for the conversation of messages from a provider endpoint to

a DSMS source and from a DSMS sink to a consumer endpoint. Sensor data can still

be sent directly to the DSMS. Therefore the system allows the communication with the

DSMS using a TCP/IP connection. This makes it possible to pre-process data even before

the SOA has to handle any of it.

As it now has to be possible to deploy a shared operator graph, which includes operators

of the SOA and the DSMS, a framework is built around the system which allows the

description, storage and deployment of shared operator graphs.

The description of the shared operator graphs is realized using XML. Operators are always

based on operator types which are predefined by the system. One of these operator types is

the “DSMS operator”. Every other operator type represents an operator of the SOA. When

128

Admin
Service

XML Interface

DB

SOA DSMS

Sensor
2

Sensor
1

Sensor
n...

O

O

OO

OOO

Virtual
Sensor
Service

App
1

App
n...

Processing
Framework

Figure 1: Schematic View of the Hybrid System

creating an operator based on an operator type using the XML interface the operator is first

saved in a database. The system also allows the creation of inputs and outputs. Inputs have

to define the ID of a sensor data stream and are used to transmit data into the processing

framework. Outputs have to define a unique name and are used to receive processed data

out of the processing framework. The user then has to orchestrate the inputs, outputs and

operators by linking them together. After all operators and links are saved in the database,

the user can use the XML interface to deploy the operator graph. The “Admin Service”

of the processing framework then accesses the database and creates the orchestration for

the SOA system and the DSMS. If the user decides to change the operator graph she can

always change its database representation. After that the graph has to be redeployed. After

the operator graph is deployed, the incoming sensor data is received by the SOA or the

DSMS. The incoming data then is processed by the SOA and DSMS operators depending

on the deployed orchestration. After the sensor data is processed it can be accessed by the

application using the “Virtual Sensor Service”.

5 Performance Evaluation

In this section a SOA based system, a DSMS and the hybrid approach are compared using

a performance evaluation. As the evaluation implementation of the hybrid approach is

based on Esper and ServiceMix 4 these systems are also used as stand alone systems for

the evaluation.

129

5.1 Evaluation scenario

The evaluation scenario is based on a community web application that allows the users to

monitor the position of their pet.

PetPositionOwnerPosition

PositionFilterPositionFilter

ObserverCheck MovementCheckSecureAreaCheck

LogicFilterLogicFilter

PetInDanger

lat,lnglat,lng

lat,lnglat,lng lat, lng

boolean boolean booleanboolean

boolean boolean

Figure 2: Schematic View of Petfinder Processing

Fig. 2 shows a schematic view of the processing for the petfinder application. Position

information is transmitted from the pet and the owner. The position filter (PositionFilter)

is used to filter invalid data. After that the valid position data is transmitted to opera-

tors which check if the pet is in danger. They check if the pet is in a secure area (Se-

cureAreaCheck), if it is observed by its owner (ObserverCheck) and if it has moved over

the last time (MovementCheck). After that, these operators transmit a boolean value that

indicates if the pet may be in danger or not to logic filters (LogicFilter). The logic filters

make sure that no alarm is sent while the pet is observed. They also check if the events

occurred at the same time. If the “PetInDanger” operator receives “true” from one of these

filters the pet is in danger and a alarm message has to be sent.

The evaluation is done using a worst case scenario. Pets are never observed, never in a

secure area and do not move. This forces the processing system to handle a huge amount

of sensor data as every incoming sensor value has to be processed by every operator. It

starts with 100 owners monitoring 100 pets. Owners and pets send a new position every

five seconds. All data is received during one second giving the system 4 seconds to process

the data before new data is transmitted. The number of owners and pets is increased by

100 every 50 seconds. 50% of the incoming pet and owner positions are illegal and have

to be filtered. The performance of each system is detected by measuring the average

time between transmitting and receiving a single data value. The test system consist of a

Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz running Linux Debian with 2.6.32-3-

amd64 Kernel and 4GB RAM. The Java(TM) SE Runtime Environment version 1.6.0 20

is used.

130

 0

 10

 20

 30

 40

 50

 0 500
 1000

 1500

 2000

D
u

ra
ti

o
n

 (
m

s)

Messages (m/s)

Total
PositionFilter

MovementCheck, SecureAreaCheck
LogicFilter

(a) Performance Evaluation of ServiceMix 4

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000

 2000

 3000

 4000

 5000

D
u

ra
ti

o
n

 (
m

s)

Messages (m/s)

DSMS Total
SOA Total

(b) Performance Evaluation of Esper

Figure 3: Performance Evaluation of Single Systems

5.2 ServiceMix 4

ServiceMix 4 is tested using the release version (4.0.0). As ServiceMix 4 does not have any

operators needed for the application scenario the operators are self implemented. Because

ServiceMix provides the developer with a simple interface structure when programming

operators and the integration is as simple as putting a jar file into a folder, the necessary

operators can be programmed and integrated within one day.

The results of the performance evaluation can be found in Fig. 3a. The peak at the begin-

ning is a result of the binding procedure of the services when the first message is processed.

But it shows that ServiceMix 4 is easily able to handle about 700 incoming data streams

within 1 seconds processing time. At that point every sensor value is processed in about

2ms. As soon as the number of data streams comes near to 1.000, the systems is no longer

able to handle them without extremely slowing down. The system now needs about 30ms

to handle one data stream. When more than 2.000 data streams are processed, ServiceMix

4 is no longer able to handle the amount of data and stops processing. This is caused by

the bus of ServiceMix which is only able to handle a fixed number of data streams. Fig. 3a

also shows the processing time of each operator. However, the evaluation shows that most

of the processing time is needed for the communication between the operators, as the sum

of the processing time of all operator is often about 10 ms below the total processing time.

5.3 Esper

Esper is evaluated using the release version 2.2.0. All needed operators are already inte-

grated into Esper. The orchestration is done by writing a EPL request. The results of the

performance evaluation can be found in Fig. 3b. It shows that Esper can easily handle up

to 5.000 in 1 seconds processing time. Every sensor value is processed in about 1ms what

is far below the time that ServiceMix 4 needed. Because of the closed system approach of

131

PetPositionOwnerPosition

PositionFilterPositionFilter

ObserverCheck MovementCheckSecureAreaCheck

LogicFilterLogicFilter

PetInDanger

DSMS

SOA

SOA

(a) Evaluation Scenario 1

PetPositionOwnerPosition

PositionFilterPositionFilter

ObserverCheck MovementCheckSecureAreaCheck

LogicFilterLogicFilter

PetInDanger

DSMS

SOA

(b) Evaluation Scenario 2

Figure 4: Evaluation Scenarios

Esper it is not possible to monitor the processing time of a single operator without spoiling

the evaluation results. However, as the implementation of the ServiceMix operators does

not differ too much from the implementation of the Esper operators it should be clear that

the time benefit is achieved by the missing communication overhead.

5.4 Hybrid Approach

The hybrid approach is tested using the basic architecture described in section 4. Therefore

the operator graph is split into parts. These parts are either processed by the ServiceMix

4 or Esper. The communication between these parts is handled by the ServiceMix 4. Two

different shared operator graphs are evaluated. The first one can be found in Fig. 4a.

In this evaluation scenario, the “SecureAreaCheck” operator, “ObserverCheck” opera-

tor, “MovementCheck” operator and the two “LogicFilter” operators are handled by the

DSMS. The processing of these operators should be much faster than the rest, because

of the missing administrative overhead. The PositionFilter operators are still part of the

SOA system and can therefore easily be changed or replaced during runtime. The second

evaluation scenario can be found in Fig. 4b. The SOA is only used for the “LogicFilter”

operators. Everything else is handled by the DSMS. In this scenario the SOA only has to

handle a minimum of data streams as the DSMS already reduces their number using the

“PositionFilter” operators. The results of both evaluations can be found in Fig. 5a. The

result of the first evaluation scenario shows, that the processing of a part of the operator

graph inside a DSMS reduces the average processing time of every data stream. However,

the processing still gets pretty slow when more than 2.000 data streams are processed.

This is exactly the point where ServiceMix 4 stopped working in the prior evaluation.

The second evaluation scenario shows that even more data streams can be processed if the

DSMS is used to filter data streams, which do not have to be processed by the SOA. As

the “PositionFilter” operators which reduce the amount of data streams by 50% are now

132

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000

 2000

 3000

 4000

 5000

D
u

ra
ti

o
n

 (
m

s)

Messages (m/s)

Hybrid Scenario 1
Hybrid Scenario 2

(a) Performance Evaluations of Hybrid System

 0

 20

 40

 60

 80

 100

 0 1000

 2000

 3000

 4000

 5000

D
u

ra
ti

o
n

 (
m

s)

Messages (m/s)

DSMS Total
Hybrid Scenario 1 Total
Hybrid Scenario 2 Total

SOA Total

(b) Performance Evaluation of All Systems

Figure 5: Performance Evaluations

processed by Esper, ServiceMix only has to process a minimum of data streams. This

reduces the communication overhead and allows the complete system to process about

4.500 data streams before slowing down. The average processing time is also extremely

low at about 2 ms. The results of all tests can be found in Fig. 5b. The evaluation proves

that using a hybrid system, which combines the benefits of a SOA system and a DSMS,

is a good way to build a flexible and efficient data processing system. The hybrid system

caused a drastically performance rise in both evaluation scenarios in comparison to SOA

system. However, a pure DSMS seems to be the fastest system, but using the hybrid sys-

tem operators can still be implemented inside of the SOA allowing them to benefit from

the flexibility that comes along with those systems. At the same time selected operators

can be integrated into a DSMS to reduce the communication overhead and increases the

efficiency of the processing.

6 Conclusion

In this paper two popular data processing technologies, Service Oriented Architectures

(SOA) and Data Stream Management Systems (DSMS), are analyzed. Their benefits and

disadvantages have been identified and analyzed. Based on this evaluation a hybrid sys-

tem has been developed that increases the performance of a SOA system by integrating a

DSMS into it. As the DSMS dos not have to be used for all operations the hybrid system

still provides all the flexibility that comes along with the SOA. The positive effects of this

hybrid approach are proven by a performance evaluation.

References

[Apa10] Apache Software Foundation. ServiceMix 4. http://servicemix.apache.org/

133

home.html, 2010.

[CCC+03] Sirish Chandrasekaran, Sirish Ch, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Sam Madden, Vijayshankar
Raman, Fred Reiss, and Mehul Shah. TelegraphCQ: Continuous Dataflow Processing for
an Uncertan World, 2003.

[Esp08] Espertech Inc. EsperTech: Event Stream Intelligence. http://camel.apache.

org/manual/, 2008.

[GBH+05] M. Grossmann, M. Bauer, N. Honle, U. Kappeler, D. Nicklas, and T. Schwarz. Ef-
ficiently Managing Context Information for Large-Scale Scenarios. In Proceedings of
Pervasive Computing and Communications, IEEE Computer Society, 2005.

[GRL+08] Levent Gurgen, Claudia Roncancio, Cyril Labbé, André Bottaro, and Vincent Olive.
SStreaMWare: a service oriented middleware for heterogeneous sensor data management.
In ICPS ’08: Proceedings of the 5th international conference on Pervasive services, pages
121–130, New York, NY, USA, 2008. ACM.

[iep] IEP - Open Source Complex Event Processing (CEP) and Event Stream Processing (ESP)
Engine . https://open-esb.dev.java.net/IEPSE.html.

[JBG+09] Jonas Jacobi, André Bolles, Marco Grawunder, Daniela Nicklas, and H.-Jürgen Appel-
rath. A physical operator algebra for prioritized elements in data streams. Computer
Science - Research and Development, 2009.

[Mic08] Microsoft Research. SenseWeb Project. Technical report, Microsoft Research, Redmond,
USA, 2008.

[Ope] Open Geospatial Consortium (OGC). Sensor Web Enablement (SWE). Specification.

[Ora10a] Oracle Corporation. OpenESB. https://open-esb.dev.java.net, 2010.

[Ora10b] Oracle Corporation. Oracle Sensor Edge Server. http://www.oracle.com/

technology/products/sensor_edge_server/index.html, 2010.

[OW210] OW2 Consortium. PEtALS. http://petals.ow2.org, 2010.

[PHHL04] Rui Peng, Kien A. Hua, and Georgiana L. Hamza-Lup. A Web Services Environment
for Internet-Scale Sensor Computing. In SCC ’04: Proceedings of the 2004 IEEE In-
ternational Conference on Services Computing, pages 101–108, Washington, DC, USA,
2004. IEEE Computer Society.

[SA07] Ali Salehi and Karl Aberer. GSN, Quick and Simple Sensor Network Deployment. In
European conference on Wireless Sensor Networks, 2007.

[SNL+06] Andre Santanche, Suman Nath, Jie Liu, Bodhi Priyantha, and Feng Zhao. SenseWeb:
Browsing the Physical World in Real Time. In Demo Abstract, ACM/IEEE IPSN 2006,
Nashville, TN, April 2006.

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Don-
ald F. Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging and More. 2005.

[Yah07] Yahoo. FireEagle: Centralized management of user location. Technical report, Yahoo
Research, 2007.

134

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

