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Abstract: The rise of the Web 2.0 has made content publishing easier than ever. Yes-
terday’s passive consumers are now active users who generate and contribute new data
to the web at an immense rate. We consider evaluating data driven aggregation queries
which arise in Web 2.0 applications. In this context, each user action is interpreted as
an event in a corresponding stream e.g., a particular weblog feed, or a photo stream.
The presented approach continuously tracks the most popular tags attached to the in-
coming items and based on this, constructs a dynamic top-k query. By continuous
evaluation of this query on the incoming stream, we are able to retrieve the currently
hottest items. To limit the query processing cost, we propose to pre-aggregate index
lists for parts of the query which are later on used to construct the full query result. As
it is prohibitively expensive to materialize lists for all possible combinations, we se-
lect those tag sets that are most beneficial for the expected performance gain, based on
predictions leveraging traditional FM sketches. To demonstrate the suitability of our
approach, we perform a performance evaluation using a real-world dataset obtained
from a weblog crawl.

1 Introduction

The world has turned into one large-scale interconnected information system with mil-

lions of users. End users, with the advent of Web 2.0, are now content generators who

actively contribute to the Web. User generated data is usually in form of semi-structured

text like personal blog entries with categorization 1 or images and videos annotated with

tags [Fli, You]. Each user action, for example uploading a picture, tagging a video or

commenting on a blog, could be interpreted as an event in a corresponding stream. Data

stream processing has gained a lot of attention in the recent years (see [BBD+02, Mut05]

for surveys), since many of today’s applications are best captured in this model. Data items

in different formats stream in to a processing unit where each item has the chance of being

⋄ This work is partially supported by NCCR-MICS (grant number 5005-67322), the FP7 EU Project

OKKAM (contract no.ICT-215032), and the German Research Foundation (DFG) Cluster of Excellence “Multi-

modal Computing and Interaction” (MMCI).
1http://google.blogspace.com/, http://www.weblogs.com/, http://www.blogger.com/
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seen once before being archived for later uses. While this model has been successfully

applied in scenarios such as sensor networks, traffic monitoring and financial data feeds,

Web 2.0 generated data has less frequently been treated as streams. Most data mining

approaches on this ever growing source of data run their analysis algorithms in an offline

fashion [KNRT05, Kle02, HJSS06], hence disregarding the live nature of the web.

Given the immense volume of data being published on the web and the desire of consuming

newly published data, there is an increasing need for processing this information in real

time in efficient ways. All this gives rise to considering this data in a streaming model.

As an example of temporal streams of information in a Web 2.0 application consider pub-

lished content in form of news articles or posts on personal weblogs (blogs). Explicit

temporal annotations (i.e. written at, uploaded at) of the content of weblogs or news por-

tals makes them natural items of a temporal stream. Mechanisms such as RSS and atom are

used to notify users of newly published data on their favored weblogs or news portals. The

items in a blog feed stream are generated at distributed sources depending on the subscrip-

tions which are made by the user. The large body of information retrieval techniques can

be used in order to extract categories or topics from the published text [APL98, ACD+98].

We consider online processing of aggregation queries over streaming data where each data

item carries a particular set of tags with it. We aim at monitoring the hottest items at

each time by defining a top-k query of currently popular tags. Hot items are subsequently

defined as those items which have high score with regard to the defined query.

1.1 Problem Statement and Contribution

We consider a stream S of tagged items where each item has the following format:

d =< itemId, time, Td >

itemId is a unique identifier specifying the object this item is describing, i.e. URL of an

image or post, and time represents the time when d was produced. Let T = {t1, ..., tn}
be the global set of tags which are used to annotate items. Td ⊂ T is the set of tags with

which d is annotated. The number of tags an item carries is usually very small (e.g., around

5) compared to standard document retrieval where a text document contains lots of terms.

For each tag we assume a given score score(d, t) that reflects the relatedness of the item

to the tag.

We further assume in-order streams; items arrive in the same order that they are generated.

In most streaming scenarios, as well as ours, recent items are of more interest than old

ones. This is captured by the sliding window model. A sliding window (W ) is assumed

over the stream and items are considered valid while they belong to this window. Sliding

windows can be either count or time based, i.e., bounding the number of items either by

count or focusing only on those that occurred in a particular time interval.

At each point in time we can compute statistics over the tags used in items currently in

the sliding window W or compute aggregation queries over these items. This view forms

the basis of our approach, which builds on statistics on tag usages to determine a set of
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popular tags. This tag set is then interpreted as a continuous and dynamic keyword query

which is executed against the sliding window as time evolves. We call this query dynamic

as it is re-build with evolving time due to changes in tag popularities.

Definition 1 Hot Tags and Hot Items: At each timestamp τ , the set of hot tags (Hτ )

consists of the c tags with the highest popularity.

The set of hot tags defines the query we use to rank the valid items, i.e., the query is data-

driven and changes with time as the popularity of tags changes. For a valid item, we define

its current score as the sum of scores of the hot tags it carries. More formally,

s(d,Hτ ) :=
∑

t∈Hτ∩Td

score(d, t)

The task is to continuously compute the top-k items as the query changes. In contrast to

standard top-k query processing over text (or XML) documents, here, the query is sup-

posed to be rather big to capture not only a few but many hot topics for diversity reasons.

In summary, the considered tags (features, in standard IR terminology) is small whereas

the query is long, which is in clear contrast to traditional query processing techniques.

In this work we focus on efficiency aspects and the potential of pre-aggregations and how

to decide which subqueries to pre-compute. For the actual decision which tags should be

considered in as query terms, one can think of other measures than the pure popularity

count based methods we use in our work, e.g., methods that aim at identifying trending

(hot) topics.

In this paper we make the following contributions. We show how to continuously com-

pute the set of hot items over social (Web 2.0) data streams by defining a dynamic top-k

aggregation query and show how pre-aggregations of popular sub queries can be used to

efficiently process the query. We evaluate our proposed methods on a real-world dataset

of blog posts showing the suitability of our approach.

This paper is organized as follows. Section 2 presents the related work. Section 3 briefly

describes the general structure that we consider in this paper together with a baseline

algorithm. Section 4 describes the problem of pre-aggregating groups of index lists for

efficient query processing and presents next to an offline problem definition an efficient

and effective approximation for online processing. Section 5 presents the experimental

evaluation. Section 6 concludes the paper.

2 Related Work

Data stream processing has been a hot topic in the past years as many of todays appli-

cations require real-time processing of dynamic data. For comprehensible surveys of this

topic in general see [BBD+02, Mut05]). Early works mostly consider one-pass algorithms

in limited space over the whole stream where all tuples are considered valid at all times.

A related problem to ours is reporting on quantiles or heavy hitters in streams. The goal
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is to report on most repeated items in the stream, when the number of items is so high

that keeping statistics for each is not possible. Approximate solutions to this problem ex-

ist which make use of techniques such as the famous AMS sketches [AGMS02], or more

recently group testing, see for example [CCFC04, CM03] and the references within. In

our work, the number of tags we consider and desire to know the hottest amongst is small

enough such that exact statistics could be kept for each.

Another line of research in stream processing is dedicated to top-k query answering in

data streams. Mouratidis et al. [MBP06] maintain a skyline [BKS01] which represents

the possible top-k candidates. Their solution is optimized for fixed queries and they focus

on changes introduced by items timing out or new items arriving in. In a more general

setting, [DGKS07] proposes indexing methods for answering adhoc top-k queries based

on arrangements. While our queries can not be considered as fixed (as the set of hot tags

changes over time with new items arriving) they are not completely adhoc either. We

exploit this fact to pre-aggregate parts of the query which can be used several times in

future queries. Jin et el. [JY+08] consider top-k queries on uncertain streams where the

data items are associated with existential probabilities. In our envisioned applications all

items are certain.

Mainly motivated by the wealth of news feeds and other online information streams, an-

other related problem is Topic Detection and Tracking (TDT) which has been extensively

studied in the past few years [APL98, ACD+98, HCL07]. The goal here is to detect new

events appearing in the data stream and tracking those events in order to later identify data

which further discuss the same event. Another related topic is mining frequent itemsets

in a data stream. In a recent work Calders et al [CDG07] define a new measure as the

frequency of an itemset and propose an incremental algorithm that allows for reporting the

exact frequencies of frequent itemsets. The problem of itemset mining is orthogonal to our

problem and can be used to improve the quality of our choice of pre-aggregation queries.

In another line of research related to Web 2.0 applications with temporal considerations,

Hotho et al. [HJSS06] consider discovering topic-specific trends in folksonomies which

are collections of resources tagged by users (such as Flickr or del.icio.us 2 ). Their analy-

sis is based on the famous PageRank algorithm. They perform the algorithm in an offline

manner and assume the whole corpus of data to be available. Weblog evolution is con-

sidered in [KNRT05], where time graphs are introduced and used for community tracking

again in an offline mode. In [MK09], the goal is to identify weblogs defined as starters

and followers specified by certain linking relations in an efficient way. In contrast to the

above, we continuously evaluated the data as it arrives in an online manner. For a survey

of temporal data analysis methods see [Kle06] and the references within.

Keeping the query results updated as data streams in with high rates requires high per-

formance evaluation of top-k queries. One way to improve the performance of expensive

queries is to maintain their results as materialized views. In order to avoid reprocessing a

top-k query in face of updates in the database, such as insertions or deletions, authors in

[YYY+03] suggest maintaining a top-k′ view, where k′ > k and show how to choose k′

dynamically to adapt to the system workload. In [HKP01] authors investigate answering a

top-k query based on the materialized results of another top-k query where the preference

2http://del.icio.us
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function is a linear combination of all attributes of tuples. It is shown how to decide given

a preference function and it’s top-l results if the top-1 result of another preference function

can be found in these materialized l tuples. In [DGKT06], the TA algorithm is adapted

to the case where a set of views, not necessarily the single inverted lists, are available.

The views are visited in a lock-step manner and in each iteration the maximum score of

unseen tuples are calculated by a linear programming optimization, given the preference

functions of each of the views. Given a set of views, the best subset for answering a query

is chosen based on a process simulating the TA utilizing the data distributions in each

view. In the same line, [KPSV09], investigate top-k query processing when intersection of

single inverted lists are also available. A combinatorial solution is proposed to solve the

specific linear program appearing when the set of lists consist of only single or intersec-

tion of two single lists. A very interesting result of the paper is that in order to guarantee

instance optimality all available lists should be investigated. In a streaming scenario how-

ever, maintaining the intersection of all pairs of single lists is not possible due to memory

constraints. In this work we propose to maintain the intersection of several lists instead

of just pairs of them and we chose the intersections based on the benefits they potentially

have for future data-driven top-k queries.

3 System Model and Structure

In this section we briefly describe the general structure that we consider. As mentioned

in Section 1.1 we consider one data stream as the input to our system where the items in

this stream contain a list of tags and they are considered valid while belonging to a sliding

window.

We assume all valid items are sorted in a first-in-first-out list. This provides an efficient

mechanism for evicting expired items. Newly arriving items in the stream are placed at the

head of this list and old items are dropped from the tail. In addition to the time sorted list,

we maintain a hash index on the valid items that point to the set of their tags. Furthermore,

for each tag, we keep a sorted list of items that have been annotated with this tag. Let li
represent the list maintained for tag ti. li is sorted based on ti’s score for each item in

descending order. When an item expires, it is also removed from the sorted list it belongs

to. Considering newly arriving items is easily achievable as it causes only insertions to a

few lists plus one insertion to the hash index and the time sorted list, as described above.

Note that as opposed to standard top-k processing where each document has potentially

very many features (terms), here, the average number of tags per item is rather small. As

a result updating the structures with new arrivals does not incur high cost.

For basic query execution we employ the threshold algorithm (TA) [Fag02], which works

as follows. It reads in parallel from the index lists, which are sorted by score in descending

order. For each item observed it looks up its score in all other lists it has not been observed

so far, which is done in our case with one lookup to the hash map as described in the

previous paragraph. The aggregated scores of the items at the current sequential access

scan depth define the stopping condition. The computation can be stopped if there are at

least k items with a score better than the aggregated score at the sequential scan lines. We
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employ the TA algorithm over the single term index lists as our baseline algorithm.

The top-k query needs to be re-evaluated in two cases: first, when an item which was part

of the top-k results expires. The second case happens when the set of top tags changes

and causes a change in the query aggregation function. In order to avoid re-computations

from scratch when a hot item expires, a k-skyband over the score-time space can be kept

[MBP06]. The k-skyband of a query contains only those items which have a chance of be-

coming a top-k result during their life time. When an item which was part of the top-k re-

sults expires, it is enough to evaluate the query on the k-skyband, instead of the entire valid

items, to fill in the top-k results. This dramatically decreases the cost of re-evaluations,

however, it is only useful when the query remains unchanged. For the rest of this paper

we do not consider possible optimizations when the top-k query is not changing, as this is

a well addressed problem [MBP06, DGKS07], rather, we will focus on solutions for the

changing query issue. In the next section we describe our approach for pre-aggregating

stable parts of the top-k query in order to decrease the cost of evaluations when the query

changes.

4 Grouping for Pre-Aggregation

Observing the changes in the top-k query itself, which is considered to be quite large

(∼ 100 tags), shows that although the query itself changes more or less every time, there

is a fraction of tags that remain as part of the query for a long duration of time. These

consists of those tags which are popular most of the time and represent current long-lived

events. Observing stable sub-queries, motivates us to maintain pre-aggregations for those

sub-queries which can later be used to evaluate the complete query more efficiently.

In this section we propose to group lists corresponding to “stable” tags together to reuse

their aggregated results. More precisely, we pre-aggregate certain lists and try to assemble

at query time the final top-k result given the pre-aggregated values.

4.1 Optimal Solution

To better understand the complexity of the problem, in this section we formulate an offline

algorithm. The offline algorithm assumes a finite stream and complete knowledge over

incoming data. Therefore the set of different top-k queries for a given time period is

known to the offline algorithm.

Given a set of queries Q = {Q1, Q2, ..., Qn}, the goal is to find an optimal set of sub-

sets of tags S that can answer all queries in Q efficiently, re-using pre-aggregations in

S . Each member of S is a subset of tags and if its cardinality is larger than one, rep-

resents a pre-aggregation of the lists maintained for the tags it contains. For example

S ∋ Si = {tj , tk} means we are maintaining a sorted list for tj ∨ tk. Let Li represent

the list corresponding to Si. Items in Li are sorted based on their score with regard to

Si:s(d, Si) :=
∑

t∈Si∩Td
score(d, t).
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In case of ties, more recent items are preferred. Li is created utilizing the simple lists we

maintain for tags which are members of Si. Assuming equal length l for all simple lists,

the cost of aggregating k such lists is k ∗ l.

Now assume a query Qy . Recall that each query is specified by a set of tags. We say a

subset S′
y ⊂ S exactly covers Qy if members of S′

y are pairwise disjoint and
⋃

Si∈S′

y
Si =

Qy . If a subset exactly covers a query, a standard TA algorithm can use it to evaluate that

query. The effectiveness of a list Li depends on the co-occurrences of tags in Si in the

stream of items. We assume the percentage of items likely to be read before TA can stop

is known for a list Li and we denote it by ci. Note that ci depends on the query and other

available lists, but for simplicity we consider it as an independent fixed value. The cost of

evaluating a query Qy using S′
y can be estimated by:

∑

Si∈S′

y
ci.

Let P be the powerset of
⋃

Qi. Given the above cost functions, we can formulate our goal

as an optimization problem which aims at minimizing the following cost function with

regard to the boolean variables xij :

∑

Si∈P

yi ∗ |Si| ∗ l +
∑

Qj∈Q

xij ∗ ci

and the following constrains:

{

yi =
∨

i xij (C1)
∀Qj∀t ∈ Qj

∑

i:t∈Si
xij = 1 (C2)

xij = 1 shows that Si is used in evaluating Qj . yi = 1 if Si is used in evaluating at least

one query. The first constraint (C1) assures this. The first summation in the cost function

accounts for the pre-aggregation expenses while the second part shows the evaluation cost.

The second constraint (C2) ensures that the set of Si’s used for evaluating each query

exactly cover that query.

The above optimization problem is not a standard linear programming problem, as the

variables yi depend on xij’s. However, even if we ignore the first part of the cost function

(the query evaluation cost), we face a 0-1 linear programming problem which is known to

be NP-hard (cf., e.g., [MS08]).

4.2 Efficient Grouping

Given the complexity of the problem described above and the fact that the set of future top-

k queries is actually not known in advance, we address the problem with an approximate

approach.

Clearly it is beneficial to pre-aggregate sets of tags which frequently appear in the future

top-k queries: Aggregating the corresponding lists of a set of tags pays off only when the

resultant list can be used enough number of times in future queries. For each observed
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tag we maintain the number of times it has appeared in the set of hot tags and predict its

probability of being part of the aggregation query based on this past information.

Assume the number of single tags with probability of appearing in future queries larger

than a specific threshold is r. These tags have to be grouped together to form a pre-

aggregated list. However, grouping all of them together may not be beneficial, as to be

able to use such a pre-aggregation all involved tags should be part of the query. The prob-

ability that a pre-aggregation of m single lists is usable in future queries, decreases with

increasing m: if p is the probability of the most frequent tag, and assuming tags appear

independent of one another, pm is an upper bound of the probability that this aggregation

list is usable. We should therefore, pre-aggregate subsets of the r candidate tags.

Grouping those tags which co-occur together in the streaming items is highly beneficial

for the overall performance as they have higher chances of appearing together in future

queries. Given the data-driven nature of the query, the query evaluation using the TA

algorithm can be done more efficiently due to the already pre-aggregated partial queries. A

pre-aggregation of tags which do not co-occur together and aggregating them creates a list

of size of sum of the sizes of single lists with non-aggregated scores. On the other hand,

aggregating single lists which have high correlation, i.e., their corresponding tags occur

together, results in a list with more score variations (in case of ties in the original list) and

higher scores, which is more effective in decreasing the threshold value maintained by the

TA algorithm and causing it to stop reading more entries.

As a measure of tag co-occurrence we calculate the resemblance value for two index lists,

which is defined as the fraction of the size of their intersection over the size of their union.

Based on the given intuitions above, in the next section we describe our proposed algorithm

for selecting tag sets to be materialized.

4.3 Tag Set Generation

To actually compute the tag sets to be materialized our algorithm considers all tags that

frequently occurring in the queries with a probability above a parameter α. Since the

cardinality of the set of tags is not large, we can maintain exact statistics for the number of

occurences of each tag in a query. We normalize the number of occurences and use it as

the probability of tag’s occurance in future queries.

Based on this group of tags we generate the tag sets of interest in the following way,

illustrated in Figure 1:

1. each tag is considered to be a node of a graph

2. for each pair of tags the resemblance is calculated

3. each pair of tags with resemblance ≥ ρ is treated as an edge in a graph

4. the connected components of the graph are sets of tags to be materialized
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Figure 1: Illustration (showing a subset of all cases to be considered) of the process of determining
tag sets of interest for pre-aggregation for ρ = 0.3. Given the top re-occurring tags as the nodes in
a graph, we connect those nodes whose index lists have a resemblance of at least 0.3. All resulting
connected components are then selected and the corresponding index lists pre-aggregated.

This technique favors those frequently reoccurring parts of the query that also frequently

appear together in the data stream.

4.4 FM Sketches for Resemblance Calculation

As the computation of the exact resemblance is extremely expensive we employ a sketch-

ing technique that can efficiently estimate the resemblance value independent of the size

of the involved index lists. In addition, as even exact resemblance numbers cannot guar-

antee the optimal pre-aggregation, the effect of slightly inaccurate resemblance numbers

are negligible.

We make use of the well known Flajolet-Martin sketches (FM sketches) [FM85], which

are compact and precise estimators of the cardinality of a multi-set. Given two sets S1

and S2 and their corresponding synopses in form of FM sketches, once can determine

the size of the intersection by combining the sketches in an extremely efficient bit-wise

fashion. More precisely, one obtains actually the size of the union given the bit-wise OR

operation of the bit-sets of the two sketches. Then, the size of the intersection is given by

the inclusion-exclusion principle (|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|), hence we can

estimate the resemblance value.

As we keep index lists for the tags we observe, there is only the small overhead of main-

taining a sketch for each of these lists. When enumerating the candidate tag sets we es-

timate their suitability to the query processing based solely on the sketches. There is no

need to compute the aggregation and assess its size as the size is directly given by the
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sketch combinations, which is very efficient.

Due to the inherently approximate nature of the sketches, the resemblance values are not

exact, which leads to decisions of which tag sets to materialize that varies from the algo-

rithm employing the true resemblance numbers.

5 Experiments

We have implemented our algorithm in Java 1.6 and executed on a Windows 2003 server

with a quad core 2.33 GHz Intel Xeon CPU, 16GB RAM, and a 800GB RAID-5 disk.

We have obtained the ICWSM 2009 Spinn3r Blog Dataset3. It consists of 44 million blog

posts between the time period of August 1st and October 1st, 2008. Each blog entry (post)

consists of plain text, a timestamp, a set of tags, and other meta information such as the

blog’s homepage URL etc. The data is formatted in XML and is further arranged into

tiers approximating to some degree search engine ranking. We have parsed the blog posts

for the highest tier levels resulting in 11, 395, 571 (timeStamp, postId, tags)-entries, with

2, 444, 780 distinct postIds, hence, an average of ∼ 2.2 tags per blog entry. For the score

of a document w.r.t. a particular tag we simply consider score 1 if the tag is attached to the

document, 0 otherwise. While in principle a measure like tag frequency would be more

suitable, the way the dataset is generated limits us to the boolean values.

Algorithms

We consider the performance of three algorithms in this experimental evaluation. All are

based on the TA algorithm [Fag02]. The difference stems from the index lists they can

involve in the query processing. More precisely, we run the following algorithms:

• plain: This is the plain algorithm involving only accesses to single-tag index lists.

• comb: This algorithm uses pre-aggregation of tag sets that are supposed to help the

query execution. The set of tags to be pre-aggregated are chosen using the algorithm

described in Section 4.3. True resemblance values are calculated by merging lists

and measuring the resultant size.

• combsketch: This algorithm also uses pre-aggregation tag sets as described in Sec-

tion 4.3. However, the resemblance values are estimated using sketches as described

in Section 4.4.

Note that the comb algorithm is in fact impractical, as it incurs huge costs just for measur-

ing the resemblance values. However we ignore this cost and use this algorithm to show

the best achievable performance using our proposed set aggregation method.

3http://www.icwsm.org/2009/data/
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Measures of Interest

We will report on several measures as part of our performance study. Note that we do

not report on accuracy measure as all algorithms report the exact top-k results to the

query described above. We consider the number of entry accesses as the main cost to

assess the suitability of the methods under comparison. We split this measure up in several

ingredients to better understand the strong and weak points of the approaches. In particular

for the algorithms that use pre-aggregation, the cost for materializing lists for sets of tags

does not occur in each query processing step. We measure:

• eval cost: This measure reports on the average number of entry accesses the thresh-

old algorithm makes to calculate the results.

• pre-aggregation cost: With this measure we provide an insight on how costly the

pre-aggregation operation is, that means, how many entries on average need to be

accessed when materializing the index lists for sets of tags, determined by the selec-

tion algorithm. The plain algorithm does not incur any pre-aggregation cost.

• total cost: In addition to the measures described above we also report on the total

cost which consists of the total (non-averaged) cost for all query evaluations plus

the overall cost for doing the pre-aggregation. We ignore the cost for calculating the

resemblance values.

Results

We run the mentioned three algorithms for different parameter settings averaging over

45 query evaluations for each setting. The query evaluation is fired at every 500 items.

The tag set generation algorithm (described in Section 4.3) is run periodically at every 20

evaluations. Unless otherwise stated we use a time-based sliding window of size W =
10, 000, 000 milliseconds. The default number of desired top-k items denoted by kdocs

is 100. The number of tags used in defining the query is denoted by ctags and its default

value is set to 75.

We first observe the effects that parameters α and ρ have on the costs incurred by our

proposed algorithms. Figures 2,3, and 4 shows the different cost values while varying the

parameter α and fixing all other parameters. As explained in Section 4.3, α denotes the

threshold for considering a tag for the subsequent tag set generations. Figure 2 presents

the evaluation cost with changing α. Small α values causes the algorithm to consider tags

which actually do not occur later in the query. These tags may have high enough resem-

blance with other tags to be part of a connected component. The tag set corresponding

to such a component is however, useless, since it contains a tag which does not actually

appear in the query. As a result, both comb and combsketch have total costs close to plain

with small α values. On the contrary, for large enough values of α a large fraction of

materialized lists are actually reusable, therefore the evaluation cost of comb and combs-

ketch is much smaller than plain. For too high values of α, less than necessary number of
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Figure 2: Eval cost values when varying the α parameter. W=10,000,000ms, kdocs=100, ctags=75,
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Figure 3: Pre-aggregation cost values when varying the α parameter. W=10,000,000ms, kdocs=100,
ctags=75, ρ = 0.6

tags are actually considered, lowering the total benefits of them in evaluating the queries.

The pre-aggregation cost is shown in Figure 3. We see that for α = 0.85 both comb and

combsketch have high pre-aggregation cost which actually pays off very well, as the total

cost at this value has a minimum for both methods.

Figure 7 shows the total costs when varying the parameter ρ, which specifies whether or

not an edge should be considered between two nodes in the tag set generation algorithm.

In our experiments ρ is not an absolute value, as the resemblance values estimated by

combsketch and sketch are very different in the absolute sense but they usually hold the

same ordering: if a list l1 has higher true resemblance to l2 than l3 this likely holds also
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Figure 4: Total cost values when varying the α parameter.W=10,000,000ms, kdocs=100, ctags=75,
ρ = 0.6
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Figure 5: Eval cost values when varying the ρ parameter. W=10,000,000ms, kdocs=100, ctags=75,
α = 0.8

in the estimated values by combsketch. So we calculate the highest resemblance value

resmax and ρ ∗ resmax is the threshold considered. We repeat the same procedure for

ρ+ step, each time increasing the resemblance threshold until it reaches 1. This way, we

produce smaller tag sets which have high resemblances. So, as observed also in Figure

6 the pre-aggregation cost decreases by increasing ρ. Note that the ρ value were the pre-

aggregation cost is actually paid off in evaluations is different for comb and combsketch.

After discovering good parameters for our algorithms, we evaluate our methods by fixing
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Figure 6: Pre-aggregation cost when varying the ρ parameter. W=10,000,000ms, kdocs=100,
ctags=75, α = 0.8
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Figure 7: Total cost when varying the ρ parameter. W=10,000,000ms, kdocs=100, ctags=75, α =

0.8

those parameters to the best found, and changing the system variables. Figure 8 shows the

total cost incurred by the three algorithms when changing the size of the sliding window.

Clearly the cost for all three methods increases, as more items are valid at each instance of

time, therefore the lists to be accessed are longer. However our algorithms incur much less

cost than the plain algorithm. Figure 9 shows the same measure when changing kdocs. As

expected the TA algorithm can stop earlier for smaller values of kdocs. Figure 10 finally,

shows the total cost when varying ctags. Since this number defines the number lists we
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Figure 8: Total cost when varying the window size, α = 0.8, kdocs =100 and ctags =75
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Figure 9: Total cost when varying kdocs, α = 0.8, W=10,000,000ms and ctags=75

should consider in the evaluation, it has a direct effect on total cost. In all three cases, our

proposed algorithms incur less cost than the plain method. Although combsketch has only

estimates of the true resemblances, its performance gains is very close to comb which has

the true resemblance values.
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Figure 10: Total cost when varying ctags, α = 0.8, W=10,000,000ms and kdocs=75

6 Conclusion

We addressed the problem of continuous monitoring of top-k hottest items over a stream of

tagged items such as blog entries or images. We have defined the property of being hot as

a top-k aggregation query where the query itself is characterized by the set of most popular

tags in a given time period. This causes the top-k query to change over time, hence requires

the system to re-evaluate the top-k query from scratch. Our approach is based on the

observation that parts of the top-k query are stable for certain time intervals, therefore, do

not have to be re-computed in each evaluation phase. As materializing pre-computations of

all possible subsets is impractical, we have presented an approximate algorithm to identify

the most promising tag subsets (i.e., top-k query ingredients) leveraging FM sketches to

predict the suitability of these tag sets. The presented generation method itself gives an

easy to use mean to control the amount of pre-aggregated lists.
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